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Changes in retinal blood vessel features are precursors of serious diseases such as cardiovascular

disease and stroke. Therefore, analysis of retinal vascular features can assist in detecting these changes

and allow the patient to take action while the disease is still in its early stages. Automation of this

process would help to reduce the cost associated with trained graders and remove the issue of

inconsistency introduced by manual grading. Among different retinal analysis tasks, retinal blood

vessel extraction plays an extremely important role as it is the first essential step before any

measurement can be made. In this paper, we present an effective method for automatically extracting

blood vessels from colour retinal images. The proposed method is based on the fact that by changing

the length of a basic line detector, line detectors at varying scales are achieved. To maintain the

strength and eliminate the drawbacks of each individual line detector, the line responses at varying

scales are linearly combined to produce the final segmentation for each retinal image. The performance

of the proposed method was evaluated both quantitatively and qualitatively on three publicly available

DRIVE, STARE, and REVIEW datasets. On DRIVE and STARE datasets, the proposed method achieves high

local accuracy (a measure to assess the accuracy at regions around the vessels) while retaining

comparable accuracy compared to other existing methods. Visual inspection on the segmentation

results shows that the proposed method produces accurate segmentation on central reflex vessels

while keeping close vessels well separated. On REVIEW dataset, the vessel width measurements

obtained using the segmentations produced by the proposed method are highly accurate and close to

the measurements provided by the experts. This has demonstrated the high segmentation accuracy of

the proposed method and its applicability for automatic vascular calibre measurement. Other

advantages of the proposed method include its efficiency with fast segmentation time, its simplicity

and scalability to deal with high resolution retinal images.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Changes in retinal vascular structures are manifestations of many
systemic diseases such as diabetes, hypertension, cardiovascular
disease and stroke. For example, changes in vessel calibre, branching
angle or vessel tortuosity are results of hypertension [1,2]. The onset
of neovascularization is a sign of diabetic retinopathy [3], a complica-
tion of diabetes which is the leading cause of blindness in developed
countries. The presence of arteriovenous nicking is an important
precursor of stroke [4,5]. The early detection of these changes is
extremely important in order to perform early intervention and
prevent the patients from major vision loss. To quantify these features
for medical diagnosis, accurate vessel segmentation plays a critical
role. Although many methods have been proposed, significant
ll rights reserved.

: þ61 3 9349 4596.

U.T.V. Nguyen).
improvement is still a necessity due to the limitations in state-
of-the-art methods, which include:
�
 poor segmentation in the presence of vessel central light reflex
(i.e., bright strip along the centre of a vessel).

�
 poor segmentation at bifurcation and crossover regions.

�
 the merging of close vessels.

�
 the missing of small vessels.

�
 false vessel detection at the optic disk and pathological regions.

Among the problems mentioned above, the first three are most
important due to their great impact on the quality of the vascular
network obtained. For example:
�
 if central reflex pixels are not recognized as part of a vessel, the
vessel may be misunderstood as two vessels.

�
 if two close vessels are merged together, they will be considered

as one wide vessel.
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�
 poor segmentation such as the disconnection at vessel cross-
over regions (where two vessels cross each other) will cause
difficulties for the vessel tracking process.

These will lead to the inaccuracy in vascular network analysis
such as the identification of individual vessel segments, vessel
calibre measurement, or vascular abnormality (i.e., arteriovenous
nicking) detection.

The segmentation results of some existing methods on a cropped
retinal image with the presence of central reflex, close vessels and
crossover points are shown in Fig. 1 to demonstrate the limitations of
current approaches. Vessel disconnection is found in Staal et al. [6]
result, while vessel merging is present in Soares et al. [7] result.
Missing of central part of vessels due to vessel central reflex are found
in both Staal and Soares et al. results. The problem with the
segmentation produced by Ricci-line [8] method is the partial
merging of two close vessels and the spurious segmentation at the
crossover point. Even though the Ricci-svm [8] method produces
accurate segmentation at these regions, it fails to detect small vessels.

The contribution of this paper is a novel segmentation method
that is effective in dealing with the problems mentioned above.
The underlying technique of the proposed method is a linear
combination of line detectors at different scales to produce the
vessel segmentation for each retinal image. A basic line detector
uses a set of approximated rotated straight lines to detect the
vessels at different angles. The difference between the average gray
level of the winning line (the line with maximum average gray level)
and the average gray level of the surrounding window provides a
measure of ‘vesselness’ of each image pixel. The proposed method is
based on an observation that by changing the length of the aligned
lines, line detectors at different scales are achieved. Long length line
detectors have shown to be effective in dealing with central reflex.
However, we show later in this article that they tend to merge close
Fig. 1. Illustration of the limitations of existing methods: (a) a cropped retinal image s

(white dashed arrows), artery-vein crossing (black solid arrows), and small vessels (b

(c) Soares et al. method [7]; (d) Ricci-line method [8]; (e) Ricci-svm method [8]; and

demonstrated its effectiveness when providing accurate segmentation at the specified
vessels and produce false positives along the vessels. Short length
line detectors have shown improvements of these situations but
they introduce background noise in the image. In order to maintain
the strength and eliminate the drawback of each individual line
detector, line responses at different scales are linearly combined to
produce the segmentation for each retinal image. Experimental
results have shown that the proposed method is an attractive
method for retinal vessel segmentation since:
�

how

lack

(f)

reg
it gives high segmentation accuracy especially at regions around

the vessels. This is reflected by the high local accuracy and the
ability of the proposed method to provide accurate vessel
width measurement.

�
 it is an unsupervised method which does not require the manual

segmentation of vessels for training and the performance does
not depend on the training set.

�
 it is efficient with fast segmentation time.

�
 it can be easily extended to perform on high resolution retinal images.

The segmentation result of the proposed method, which is shown
in Fig. 1(f), has demonstrated the strengths mentioned above.

The rest of this paper is organized as follows. Section 2 provides an
overview of state-of-the-art vessel segmentation methods. Details of
the proposed method are described in Section 3. Section 4 presents
the experimental results obtained on DRIVE and STARE datasets while
the performance on REVIEW dataset is presented in Section 5. Finally,
we conclude the paper with Section 6.
2. Related works

In response to the importance of the vessel segmentation problem,
a large number of methods have been introduced in the literature.
s the presence of vessel central light reflex (white solid arrows), close vessels

dashed arrows) and segmentations obtained by (b) Staal et al. method [6];

the proposed method. The segmentation result of the proposed method has

ions while being able to detect those small vessels.
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A complete review of existing methods for retinal blood vessel
segmentation can be referenced at [9]. For completeness, we briefly
summarize state-of-the-art methods in this section.

The first proposed methods [10–15] are based on tracking
techniques to trace the vessels starting from some seed points
(which are identified either manually or automatically) and follow-
ing the vessel center line guided by local information. An advantage
of tracking based methods is its efficiency since only pixels close to
the initial positions are examined and evaluated. In addition,
important information (i.e., vessel diameter and branching points)
are often extracted together with the vascular network. However,
a drawback of these methods is that sophisticated methods have to
be used to deal with a bifurcation or crossover point due to the
complexity of the intensity profile at these regions. Since vessel
branching or crossover points are not well modeled, this approach
often tends to terminate at these points and this leads to the
incompletion in the detection result.

Another approach is the use of matched filter concept [16] for
blood vessel enhancement. This approach is based on the assump-
tion that the intensity profile along the cross-section of a vessel
has the shape of a Gaussian. A set of 12 Gaussian shaped filters is
used to match the vessel at different directions. For each pixel, the
maximum response is retained. Different variants [17–20] have
been proposed to improve the performance of the original
matched filter response, ranging from the use of a threshold
probing technique [17], ‘double-sided’ thresholding [19], or the
first order derivative of Gaussian image [20] to provide a better
thresholding method and reduce false vessel responses at non-
vessel structures. A limitation of matched filter based methods is
its naive assumption that the cross-sectional intensity profile of a
vessel follows the shape of a Gaussian, which is not always the
case (for example, in the presence of central reflex). Moreover, the
assumptions that the vessels are piece-wise linear and have
constant width along a certain distance make it difficult to adapt
to the variations in vessel width and orientations.

Recently, there is an emerging trend of using supervised
methods [6–8,21–26] to perform this segmentation problem.
Methods belonging to this category often follow the same frame-
work where each image pixel is represented by a feature vector,
which is computed using local or global information of the image.
A supervised classifier (ranging from the use of artificial neural
networks [21], kNN [6,22], support vector machines [8,26], Baye-
sian classifier [7], etc.) is used to train the model and classify each
image pixel as vessel or background. Supervised methods have
been shown to provide higher accuracy than other unsupervised
methods. However, they require the ground truth segmentations
for training the models which is not always available in real
life applications. Furthermore, these methods often require the
‘re-training’ process when performing on the new set of images to
achieve optimal performance. In other words, the performance of
these methods is highly dependent on the training dataset.

Besides the three main approaches mentioned above, a number
of alternative methods have been proposed. The method proposed
by Zana et al. [27] is based on the fact that vessels are piecewise
linear and connected. Hence, mathematical morphological opera-
tors with linear structuring elements are used to enhance and
differentiate the vessels from the background. Jiang et al. [28]
propose a multi-threshold probing technique to threshold the
image at different levels and uses a verification procedure to detect
the vessels in the segmented images. The final segmentation is
obtained by a combination of those segmented images returned in
each step. Vermeer et al. [29] use the Laplacian filter and thresh-
olding to enhance and extract blood vessels from retinal images.
A method based on morphological closing operator is then applied
to fill in vessel central light reflex. In [30], the local maxima over
scales of the gradient magnitude and the maximum principle
curvature are used as two features to classify each pixel as vessel
or background using multiple pass region growing process. Lam
et al. [31] use the gradient vector field to detect vessel like objects
while employing the normalized gradient vector field to detect the
vessel centerlines. A pruning step to remove all vessel pixels that
are far away from the centerlines is employed to reduce falsely
detected vessels. Lam et al. [32] propose a method to deal with
both bright and dark lesions in an abnormal retina. Three different
concavity measures are proposed to detect the vessels and distin-
guish the vessels from the bright and dark lesions. Vlachos et al.
[33] employ a multi-scale line-tracking procedure to trace the
vessels starting from a set of seed pixels (determined by the
brightness selection rule) and terminate when the cross-sectional
profile is invalid. The image maps at different scales are then
combined together to produce a multi-scale image map.
3. Proposed segmentation method

In this section, we first review the basic line detector (which
was first used as a means for vessel-background classification by
Ricci et al. [8]) upon which our method is built. We then present
the proposed generalized line detector and the method to
combine the line detectors at varying scales to produce the final
segmentation for a retinal image.

3.1. Basic line detector

The basic line detector works on the inverted green channel of
a retinal image where the vessels appear brighter than the
background. At each pixel position, a window of size W�W

pixels is identified and the average gray level is computed as
IW
avg . Twelve lines of length W pixels oriented at 12 different

directions (angular resolution of 15o) passing through the cen-
tered pixels are identified and the average of gray levels of pixels
along each line is computed. The line with the maximum value is
called the ‘winning line’ and its value is defined as IW

max. The line
response at a pixel is then computed as:

RW ¼ IW
max�IW

avg ð1Þ

The underlying idea behind this is that if the considered pixel is a
vessel pixel, the response obtained will be large due to the
alignment of the winning line along the vessel. In contrast, the
response is low for a background pixel due to the small difference
between the average gray level of the winning line and the
surrounding window. The basic line detector has one parameter
to be set, the window size W, which is chosen to ensure that the
window of the pixel at the center of the vessel consists of an
approximately equal number of vessel and background pixels.
Thus, it is often set as twice of the typical vessel width in an
image set. For example, it has been shown that W¼15 is a good
choice for retinal images in DRIVE dataset [6] where the typical
vessel width is 7–8 pixels [8].

The basic line detector has shown to be effective when dealing
with the vessel central light reflex. In the presence of central
reflex, the intensity values of pixels in the middle of a vessel
become lower than its surrounding pixels instead of achieving
maximum values as in a normal vessel. This often leads to the
misclassification of these pixels as background due to the proxi-
mity in their intensity values. However, the line detector can
recognize them as part of the vessel due to the fact that the
winning line includes only a small number of ‘central reflex’
pixels. As a result, its average value is not affected much by these
pixels which results in large responses like those of vessel pixels.
Also, thanks to the use of long length lines that span through the
whole surrounding window, most of background pixels are
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correctly classified and the response image is almost free of
background noise. The response image produced by the basic line
detector on a retinal image is presented in Fig. 2(a).

However, the three drawbacks of the basic line detector
include: (1) it tends to merge close vessels; (2) it produces an
extension at crossover points; (3) it produces false vessel
responses at background pixels near strong vessels (vessels with
high intensity values in images where vessels appear brighter
than the background). These can be observed in the three
segmentation patches as shown in Fig. 2(b). The false vessel
responses along a strong vessel can be seen in the top segmenta-
tion while the extension at two crossover points can be observed
in the middle one. The partial merging of two close vessels is
presented in the bottom image. In these cases, the aligned line
gets high average value due to the inclusion of pixels of surround-
ing vessels, which leads to an unexpected large response value
which is similar to those of vessel pixels. These situations are
depicted in Fig. 3.
3.2. Multi-scale line detectors

To overcome the three drawbacks mentioned above, we
propose to generalize the basic line detector by varying the length
Fig. 2. (a) Line strength image of the basic line detector (W ¼15) on a retinal image a

vessel responses at: background pixels close to strong vessels (first row), at crossover p

(The vessels are shown in black in this figure for better visualization.)

Fig. 3. Three situations where the basic line detector gives false responses: (a) at a back

crossover point; (c) at a background pixel near a strong vessel.
of the aligned lines. The generalized line detector is defined as:

RL
W ¼ IL

max�IW
avg ð2Þ

where 1rLrW , IL
max and IW

avg are defined as above. By changing
the values of L, line detectors at different scales are achieved.
Fig. 4 depicts a line detector with W¼15 and L¼9 where 12 lines
of 9 pixel length are placed on top of a window of 15�15 pixels.

The main idea behind this is that line detectors with shorter
lengths will avoid the inclusion of surrounding vessel pixels and
hence, give correct responses to three situations presented in Fig. 3.
To demonstrate this improvement, the responses of the basic line
detector (R15) and generalized line detector (R3

15) at different pixel
positions (Fig. 5) are examined and presented in Table 1. It can be
seen that the basic line detector returns high responses to background
pixels for three cases (d)–(f) while the generalized line detector gives
much lower values for these cases, which makes it possible to
distinguish vessel and background pixels for all mentioned cases.

The response image produced by the generalized line detector
(W ¼15, L¼3) on the same image of Fig. 2(a) is presented in
Fig. 6(a). The three segmentation patches presented in Fig. 6(b) have
demonstrated the improvements of the generalized line detector:
there is no false vessel responses along the strong vessel (top
image), segmentation at two crossover points are more accurate
nd (b) its segmentation results at some selective image patches showing the false

oints (second row), and at background pixels between two close vessels (last row).

ground pixel between two close vessels; (b) at a background pixel at the corner of a
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(middle image), and two close vessels are well separated (bottom
image). However, it can be seen that background noise is introduced
in the whole image as a result of reducing the line length. To
overcome this problem, line responses at varying scales are linearly
combined as described in the next section.

We should note that the raw response values returned by the line
detector at each scale are in a narrow range, which results in a very
low contrast between the vessels and the background. For example,
the raw response image of generalized line detector (W ¼15, L¼3)
(Fig. 7(a)) on a retinal image has shown that the vessels and
background are in very low contrast since the intensity range is from
�0.1709 to 0.2764 with a mean and standard deviation values of
0.0046 and 0.0231, respectively. To enhance the contrast in these
images, we standardize the values of the raw response image to make
it have zero mean and unit standard deviation distribution:

R0 ¼
R�Rmean

Rstd
ð3Þ

where R0 is the standardized response value, R is the raw response
value, Rmean and Rstd are the mean and standard deviation of the raw
response values, respectively. The main purpose of this standardiza-
tion is to keep the distribution of the intensity values unchanged
(hence, retaining the differentiation between the vessels and the
background in the standardized image) but spread out the intensity
values to a wider range to achieve a better contrast between the
vessels and the background. The corresponding standardized image is
Fig. 4. A generalized line detector with W ¼15 and L¼9.

Fig. 5. Different pixel positions on a real image (white dots) and the expected responses R

(R40); (d) a background pixel within two close vessels (R� 0); (e) a background pixel n
presented in Fig. 7(b). Clearly, the standardization has significantly
improved the vessel and background contrast. This normalization was
applied to the response images produced by line detectors at different
scales before applying to the combination process.

3.3. Combination method

In the combination process, we assign the same weight for
each scale and the final segmentation is the linear combination of
line responses of different scales. The response at each image
pixel is defined as:

Rcombined ¼
1

nLþ1

X
L

RL
Wþ Iigc

 !
ð4Þ

where nL is the number of scales used, RW
L is the response of line

detector at scale L, and Iigc is the value of the inverted green channel
at the corresponding pixel. The original green channel is included
into the combination since it provides additional information to
discriminate the proximity between the blood vessels and other
structures such as pathologies and the optic disk. The benefit of this
inclusion is studied and presented in Section 4.6. Fig. 8 shows
the segmentation obtained using the proposed linear combination
process. It can be seen that the aggregation of line responses at
different scales has helped to eliminate the background noise while
maintaining good segmentation at regions close to the vessels.

4. Performance on DRIVE and STARE

The performance of the proposed method was evaluated and
compared to most recent methods on two publicly available STARE
[17] and DRIVE [6] datasets. STARE dataset consists of 20 retinal
images while DRIVE dataset consists of 40 retinal images divided into
two sets: the training set and the test set. In DRIVE dataset, for
comparison purpose, the performance of the proposed method is
measured on 20 test images. In each dataset, the segmentations of the
first observer are used as the ground truth for evaluation while the
at: (a) a vessel pixel (R40); (b) a background pixel (R� 0); (c) a central reflex pixel

ear the crossover point (R� 0); (f) a background pixel near the strong vessel (R� 0).

Table 1

Responses of the basic line detector (R15) and generalized line detector (R3
15) at

different pixel positions presented in Fig. 5. Incorrect responses are highlighted in

bold-faced numbers. The basic line detector produces false responses for three

cases (d)–(f) while the generalized line detector has shown its improvements

when producing expected responses for all cases presented.

Case (a) (b) (c) (d) (e) (f)

R15 0.055 0.002 0.028 0.024 0.023 0.013

R3
15

0.060 �0.007 0.010 �0.013 �0.031 �0.015

Expected R R40 R� 0 R40 R� 0 R� 0 R� 0



Fig. 6. (a) Line strength image of the generalized line detector (W ¼15, L¼3) on the same retinal image of Fig. 2(a) and (b) segmentation results at some image patches

showing its improvements compared to the basic line detector.

Fig. 7. Response images of generalized line detector (W ¼15, L¼3) on a retinal image (a) before and (b) after applying standardization.

1 The source code and segmentation results of the proposed method can be accessed

online at: http://people.eng.unimelb.edu.au/thivun/projects/retinal_segmentation/
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performance of the second observer is used as a benchmark for
comparison.

4.1. Evaluation measures

In this experiment, two measures, the accuracy (ACC) and local
accuracy (Local ACC), are used as main measures for evaluation and
comparison. The accuracy has been widely used in this area as the
main measure for evaluation and is measured by the ratio of the
total number of correctly classified pixels (sum of true positives and
true negatives) to the number of pixels in the image field of view
(a mask image which defines the field of view is provided for each
retinal image). We call this global accuracy since all pixels within
the fundus are used for the computation. However, since back-
ground pixels often occupy more than 80% of a retinal image, the
global accuracy obtained are always high and there is only a small
discrimination in accuracy values of different methods. Motivated
by this and by the fact that most of the following analysis (i.e., vessel
caliber measurement or crossover point abnormality detection) are
performed using pixels within a certain distance from the true
vessels, the local accuracy is also used as an additional measure.
In this measure, only vessel and background pixels around the true
vessels are considered for accuracy measurement. To achieve this, the
ground truth image is dilated using morphological dilation operator
with a structuring element of size S and this dilated version is used as
the mask for accuracy measurement. The local accuracy of different
methods are reported with S¼3, since at this value an equal number
of vessel and background pixels are considered for accuracy compu-
tation. In this experiment, paired two sided Wilcoxon sign rank tests
are used to check for significant difference.
4.2. Parameter setting

Parameter setting of the proposed method on these datasets is
as follows.1 W is set to 15 pixels (since vessel width in these
images is around 7–8 pixels) and the line responses at 8 scales

http://people.eng.unimelb.edu.au/thivun/projects/retinal_segmentation/


Fig. 8. (a) Line strength image obtained after the linear combination process on the same retinal image of Fig. 2(a) and (b) segmentation results at some image patches

showing its improvements over the individual line detectors.
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(from 1 to 15 with a step of 2) are linearly combined to produce
the final segmentation for each image. The segmentation obtained
by our method is a soft classification where each value represents
the probability of each pixel of belonging to the vessel class.
A single threshold is then used to segment the soft classification
and produce binary segmentation for each retinal image. In order
to choose the threshold value, 20 images in DRIVE training set are
used to tune the threshold parameter. The threshold value that
produces highest average accuracy on the training set is at
t¼0.56. Hence, the same threshold value (t¼0.56) is used to
segment all images in DRIVE test set and STARE dataset.

4.3. Quantitative assessment

Table 2 presents the performance of different methods in
terms of accuracy and local accuracy on DRIVE and STARE
datasets. All of these values were computed using the segmenta-
tion results produced by each method. The segmentations of Staal
et al. [6], Niemeijer et al. [22], Jiang et al. [28], Perez et al.
(on DRIVE images) [30], Zana et al. [27], Chaudhuri et al. [16]
methods are downloaded from DRIVE website.2 Results of Soares
et al.3 [7], Marin et al.4 [25], Perez et al.5 (on STARE images) [30]
methods are obtained from their websites. Results of Lupascu
et al. [24] method are provided by the authors. Since the
segmentation results of Ricci et al. methods are not available for
comparison, we implemented the two methods proposed by Ricci
et al. [8], the unsupervised method (denoted as ‘Ricci-line’) and
supervised method (denoted as ‘Ricci-svm’). To get the binary
segmentations returned by Ricci-line method, different thresh-
olds are examined and the one that provides highest average
accuracy on each dataset is chosen. However, we cannot achieve
the accuracy as presented in that paper (also reported by Lam
et al. [32]). Regarding the Ricci-svm method, we implemented it
using the conditions described in the paper (i.e. linear SVM with
2 http://www.isi.uu.nl/Research/Databases/DRIVE/
3 http://retina.iv.fapesp.br
4 http://uhu.es/retinopathy/eng/bd.php
5 http://turing.iimas.unam.mx/elena/Projects/segmenta/DRIVE.html
C� ¼ 1 and Cþ ¼7) but the average accuracy obtained is much
lower than the reported one. Hence, different parameter settings
for SVM model were tested and the performance obtained with
the optimal setting (nonlinear SVM using RFB kernel with
C� ¼ Cþ ¼ 1 and g¼ 2) is reported in this paper.

The results show that the accuracy of the proposed method is
higher than most of unsupervised methods (except Perez et al.
and Ricci-line on STARE) with po0:03, and approaches the
performance of other supervised methods on both datasets. More
importantly, the results show that the local accuracy of our
proposed method is higher than all unsupervised and supervised
methods (po0:002) and approaches the performance of
the second observer on DRIVE dataset. On STARE dataset, the
local accuracy of the proposed method also approaches the
performance of the second observer, be comparable to Soares
and Perez et al. methods and keep higher than other methods
(po0:0008).

Figs. 9 and 10 show the local accuracy of different methods
when the structuring element size S (the parameter used for local
accuracy measurement) increases from 1 to 10 on DRIVE and
STARE datasets, respectively. The two graphs show that the local
accuracy achieved by our method is higher than those of the other
methods at small sizes of S (S from 1 to 4) and is comparable to
other methods at larger structuring element sizes S. It should be
noted that at small sizes of S, the errors in the local accuracy
measurement mainly comes from the misclassification of vessel
pixels to background pixels. Visually, these false negatives are
presented in the segmentation result as the presence of central
reflex artefacts, vessel disconnection or the missing of small
vessels. The superior performance at these small sizes of S has
demonstrated the capability to give accurate segmentation
around the vessel regions of the proposed method.

4.4. Qualitative assessment

The improvements of the proposed method over existing
methods in terms of local accuracy can also be observed on the
segmentation results. To demonstrate this, the segmentation
results obtained by our method and those of two supervised

http://www.isi.uu.nl/Research/Databases/DRIVE/
http://retina.iv.fapesp.br
http://uhu.es/retinopathy/eng/bd.php
http://turing.iimas.unam.mx/elena/Projects/segmenta/DRIVE.html
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methods, Staal et al., Soares et al., and Ricci-line method at some
selective regions (regions with the presence of central light reflex
and close vessels) are presented in Fig. 11 for comparison. It can
be observed that both Staal and Soares et al. methods are
ineffective in dealing with central reflex when assigning those
pixels at the center of central reflex vessels as background.
Table 2
Performance of different segmentation methods in terms of ACC and local ACC

(S¼3) on DRIVE and STARE datasets.

Method DRIVE STARE

ACC Local ACC ACC Local ACC

Second observer 0.9473 0.7921 0.9350 0.7706

Supervised methods

Staal et al. [6] 0.9442 0.7749 – –

Soares et al.[7] 0.9466 0.7772 0.9480 0.7525

Lupascu et al. [24] 0.9409 0.7604 – –

Niemeijer et al. [22] 0.9416 0.7562 – –

Marin et al. [25] 0.9448 0.7710 0.9481 0.7322

Ricci-svm [8] 0.9424 0.7590 0.9496 0.7276

Unsupervised methods

Jiang et al. [28] 0.9222 0.6915 – –

Hoover et al. [17] – – 0.9240 0.6998

Perez et al. [30] 0.9316 0.7670 0.9196 0.7607

Zana et al. [27] 0.9320 0.7318 – –

Chaudhuri et al. [16] 0.8884 0.5587 – –

Ricci-line [8] 0.9329 0.7413 0.9356 0.7285

Proposed method 0.9407 0.7883 0.9324 0.7630
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Fig. 9. Local ACC of different methods on
Moreover, Soares and Ricci-line methods tends to merge two
close vessels together. On the contrary, the proposed method
provides correct vessel response at central reflex pixels while
keeping close vessels well separated.

4.5. Execution time

Table 3 presents the execution time of different methods on
DRIVE and STARE datasets. On a PC Intel Duo Core 2.4 GHz CPU
and 2 GB RAM, it takes 2.5 s to segment a DRIVE or STARE image
using our proposed method. The proposed method is efficient
since its segmentation time is fast and no training time is needed.
Currently, the implementation is in Matlab and no optimization
is performed. So, the execution time could be reduced further.
In addition, since only linear filtering is involved, the proposed
method can be easily extended to work on high resolution retinal
images.

4.6. Discussions

Currently, the proposed method works extremely well on
healthy retinal images even in the presence of vessel central
reflex. However, a drawback of the proposed method is that it
tends to produce false vessel detection around the optic disk and
pathological regions such as dark and bright lesions. This has
lowered the overall accuracy of the proposed method especially
on STARE images. This limitation has been demonstrated in Fig. 12.
6 7 8 9 10
element size S

Second observer
Proposed method
Staal et al. method
Soares et al. method
Perez et al. method
Marin et al. method
Niemeijer et al. method
Lupascu et al. method
Jiang et al. method
Ricci-svm method
Ricci-line method
Zana et al. method

DRIVE when S increases from 1 to 10.
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Fig. 10. Local ACC of different methods on STARE when S increases from 1 to 10.

Fig. 11. Segmentation results on some selective regions showing the improvements of the proposed method over existing methods in terms of segmentation quality:

(a) original image; segmentations of (b) Staal et al. method; (c) Soares et al. method; (d) Ricci-line method; and (e) proposed method.

U.T.V. Nguyen et al. / Pattern Recognition 46 (2013) 703–715 711
To solve this problem, a post-processing step to localize these
regions would help to reduce these false positives and improve the
performance of the method further.
In addition, to investigate the benefit of the green channel in
the combination process described in Section 3.3, we explored the
performance achieved by the proposed method when the green
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channel is included and excluded from the combination and the
results are presented in Table 4. It is shown that the inclusion of
the green channel has helped to improve the performance of our
Table 3
Performance of different segmentation methods in terms of execution time on

DRIVE and STARE datasets.

Method Running time

Second observer 7200 s

Staal 900 s

Soares 190 s(9 h for training)

Lupascu 125 s (4 h for training)

Marin 90 s

Ricci-SVM 79 s(20 s for training)

Ricci-line 0.37 s

Proposed method 2.5 s

Fig. 12. Examples show the limitations of the proposed method: (a) original

image; (b) segmented image. Top row: the segmentation shows false vessel

detection around the optic disk. Bottom row: the segmentation shows false vessel

response at pathological region (i.e., bright lesions).

Table 4
Performance achieved by the proposed method on DRIVE and STARE datasets

when the green channel is included in and excluded from the combination

process.

Dataset ACC Local ACC

Included Excluded Included Excluded

DRIVE 0.9407 0.9373 0.7883 0.7860

STARE 0.9324 0.9248 0.7630 0.7554

Fig. 13. An example shows the effect of including the original green channel into the co

obtained (b) without and (c) with the inclusion of the original green channel. The inclu

disk region.
method on both DRIVE and STARE datasets. This improvement
comes from the reduction in the number of false positives at the
optic disk and pathological regions when the green channel is
included into the combination. An example of this improvement
is demonstrated in Fig. 13. Hence, the green channel has been
included into the combination to improve the segmentation
accuracy of our proposed method.
5. Performance on REVIEW

In this experiment, we aim at assessing the applicability of the
proposed method to provide accurate vessel width measurement
on retinal images with the presence of central reflex. This is
motivated by the fact that the vessel width is an important factor
for disease prediction and it is one of the ultimate goals of retinal
image analysis. This experiment was performed on REVIEW
dataset [34], a retinal vessel reference dataset which was
designed to assess the accuracy and precision of the vessel width
measurement algorithms in the presence of pathologies and
central light reflex. The vessel width measurements obtained
using the segmentations produced by our method are compared
against the measurements done by the human observers. Com-
parison is also made to the results obtained using the segmenta-
tions produced by Ricci-line method. The performance of the
proposed method was evaluated using two retinal images
(CLRIS001 and CLRIS002) in the CLRIS (Central Light Reflex Image
Set) set. These two images contain 21 vessel segments (3 in
CLIRIS001 and 18 in CLRIS002) with 285 profiles manually
marked by three independent observers. Fig. 14 shows a retinal
image in this set with three vessel segments manually marked by
the first observer.
mbination process: (a) a cropped retinal image at the optic disk; the segmentations

sion of the green channel has helped to reduced false vessel responses at the optic

Fig. 14. A retinal image in CLRIS set with three vessel segments manually marked

by the first observer.



Fig. 15. (a) A portion of CLRIS002 image and segmentations obtained by (b) Ricci-line method and (c) our proposed method.

Fig. 16. Method for identifying vessel edge points representing vessel width at a

center point.

6 http://reviewdb.lincoln.ac.uk/REVIEWDB/REVIEWDB.aspx
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5.1. Parameter setting

Parameter setting for our proposed method on this dataset is
as follows. W is set to 41 pixels (since vessel width in these
images is approximately 20 pixels on average) and the line
responses at 21 scales (from 1 to 41 with a step of 2) are linearly
combined to produce the final segmentation for each image. The
same threshold value (t¼0.56) is used to segment the soft
classification and produce the binary segmentation for images
in this set. It takes 84 s for our method to segment an image
(2160�1440 pixels) in this set. Fig. 15 shows the segmentations
obtained by the proposed method and Ricci-line method on a
cropped retinal image in this set. It can be observed that in the
segmentation produced by the Ricci-line method, there are many
false positive pixels at regions between two close vessels. If either
one of these two vessels is considered for vessel width measure-
ment, the false positives along these vessels will affect the
measurement process and decrease the accuracy of the measure-
ments obtained. The improvements of the result produced by our
proposed method over Ricci-line method can be observed in this
segmentation result (Fig. 15(c)) as there are no false positives at
regions between these two vessels.

From the segmentation obtained by each method, the points
along the vessel edge are extracted and fed to a method for
automatic vessel width measurement. For comparison, we iden-
tify the center points of all profiles which were manually marked
by an observer. An automatic method will use the edge image
extracted and identify the profile at each center point.

5.2. Vessel width measurement method

This method is designed to identify a pair of edge points
representing the width of a vessel at a specific center point. At
each center point, all edge points (points in the edge image) that
are within a certain mask centered on the center point are
located. For each edge point, its mirror point which is on the
other edge side and forms a 1801 angle with current edge point is
determined. To efficiently detect the mirror for all edge points, at
each edge point Ei, the angle ai formed by the vector pointing
from the center point to the edge point and the vector represent-
ing the horizontal line is computed. An edge point Ej is considered
as the mirror point of Ei if:

�Eo9ai�aj9�180oE ð5Þ

where E is a small positive value defining the acceptable differ-
ence between the angle formed by two edge points and the
difference in the ideal case, 1801. It is set as 51 in our experiment.
From the set of pairs of edge points, the pair of edge points with
the shortest length is identified as the edge points representing
the vessel width (Fig. 16).

Fig. 17(a) shows a portion of image CLRIS001 with a vessel
segment (with the presence of central reflex) manually marked by
the first observer. The average of vessel width along this segment
is computed as 14.8 pixels using the profiles manually marked by
the expert. Fig. 17(c) shows the vessel profiles along the corre-
sponding segment that were automatically detected using the
segmentation produced by our method (Fig. 17(b)). The average
of vessel width returned by the automatic method along this
segment is computed as 14.82 pixels. This has demonstrated that
the proposed segmentation method produces very accurate seg-
mentation along this vessel.

5.3. Results

Table 5 presents the vessel widths (in terms of pixel) on 21
vessel segments of CLRIS001 and CLRIS002 images measured by
the three observers (Obs. 1, Obs. 2 and Obs. 3), Ricci-line and the
proposed method. It is worth noting that among the three
observers, the first observer (Obs. 1) is an ophthalmic specialist,
the second (Obs. 2) is a specialist optometrist and the third
(Obs. 3) is a trained grader.6 Hence, we use the mean values of
the measurements provided by the two specialists (Obs. 1 and
Obs. 2) as the ground truth measurements while the measure-
ments of the trained grader (Obs. 3) are evaluated for comparison
purpose. To assess the performance of each measurement
method, the mean absolute error is used:

MAEðA,MÞ ¼
1

N

XN

i ¼ 1

9Ai�Mi9 ð6Þ

where N is the number of vessel segments considered, Ai is the
measurement produced by method A and Mi is the ground truth
measurement, respectively, at the i-th segment. The performances
of different methods in terms of mean absolute error are pre-
sented in the last row of Table 5.

The results show that the measurements produced by the
proposed method are more accurate than the Ricci-line method.
This is reflected by the fact that the mean absolute error of the
proposed method is of 1.19 pixels while this error of Ricci-line
method is 2.08 pixels. In addition, it should be noted that
the error of the proposed method is even lower than the error of
the trained grader (Obs. 3). This has demonstrated the fact that the
proposed method produces highly accurate segmentation which
can be used for automatic vessel width measurement process.
6. Conclusions

In this paper, we proposed a novel retinal blood vessel
segmentation method which is based on the linear combination

http://reviewdb.lincoln.ac.uk/REVIEWDB/REVIEWDB.aspx


Fig. 17. Results of vessel width measurement on a vessel segment: (a) a cropped retinal image with vessel profiles representing the vessel width manually marked by an

observer; (b) segmentation produce by the proposed method; (c) the vessel profiles automatically marked using the segmentation produced by the proposed method.

Table 5
Vessel width measurements and mean absolute error (MAE) of different methods

on 21 vessel segments of CLRIS001 and CLRIS002 images.

Segment Mean of vessel width

No. Obs. 1 Obs. 2 Obs. 3 Ricci-line Proposed method

CLRIS001

1 14.80 15.98 18.12 15.69 15.09

2 15.15 16.34 16.88 16.33 15.68

3 17.63 19.87 19.51 18.70 18.86

CLRIS002

1 11.41 10.46 12.88 13.60 13.46

2 20.15 20.28 21.86 19.80 19.95

3 20.68 20.53 21.23 20.01 20.14

4 19.35 19.31 20.69 18.77 19.24

5 15.95 16.17 17.49 15.35 15.84

6 10.82 10.36 12.44 13.43 13.42

7 11.14 10.70 13.82 15.28 15.11

8 11.36 10.31 13.33 13.04 12.98

9 13.36 13.35 14.30 14.22 13.80

10 10.01 9.63 10.50 7.27 8.93

11 11.45 14.12 14.14 14.56 14.05

12 12.54 14.29 13.33 15.86 15.61

13 15.65 16.10 17.07 17.32 16.49

14 10.87 12.09 12.07 11.91 12.19

15 8.07 7.89 8.62 10.25 9.94

16 12.88 13.61 14.20 25.68 12.72

17 7.74 7.17 8.13 9.53 9.72

18 7.44 7.85 8.07 5.44 6.74

MAE – – 1.26 2.08 1.19
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of line detectors at varying scales. Experimental results have
shown that the proposed method produces comparable accuracy
(0.9407 for DRIVE and 0.9324 for STARE) while providing high
local accuracy (0.7883 for DRIVE and 0.7630 for STARE, which is
higher than any other methods) on DRIVE and STARE datasets.
These results have demonstrated the high segmentation accuracy
of the proposed method especially at regions around the vessels,
where it is most important. This is also observed in the segmen-
tation results shown in some examples in this article. The high
segmentation accuracy of the proposed method is also confirmed
by the accurate vessel width measurements produced by the
proposed method on 21 segments of two retinal images in
REVIEW dataset. The results show that the vessel width measure-
ments obtained using the segmentations of the proposed method
are highly correlated to the measurements provided by the
experts with a mean absolute error of 1.19 pixels (while this
error of the trained grader is 1.26 pixels). With these significant
improvements, we conclude that our method will be very effec-
tive for vascular network mapping and vessel caliber measure-
ment. In addition, compared to other approaches, our method is
efficient with fast segmentation time (2.5 s per image) and can be
easily scaled to deal with high resolution retinal images. More-
over, as being an unsupervised method, the proposed method is
helpful when manual segmentations are not available for training
purpose. In the future, we plan to apply our method to extract and
analyze the vascular network to detect arteriovenous nicking for
cardiovascular disease prediction.
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