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Abstract

We examine currency options in the double exponential jump-diffusion version of the Heston
stochastic volatility model for the exchange rate. We assume, in addition, that the domestic and
foreign stochastic interest rates are governed by the CIR dynamics. The instantaneous volatility
is correlated with the dynamics of the exchange rate return, whereas the domestic and foreign
short-term rates are assumed to be independent of the dynamics of the exchange rate and its
volatility. The main result furnishes a semi-analytical formula for the price of the European
currency call option in the hybrid foreign exchange/interest rates model.

JEL Classification: G13

1 Introduction

We extend the results from Ahlip and Rutkowski (2015) by deriving a semi-analytical pricing formula
for the currency option in a model where the volatility of the spot exchange rate is specified by the
extended Heston model to include double exponential jumps considered by Kou(2002), Kou et al.
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(2004) and Ning Cai et al.(2011) whereas the domestic and foreign interest rates are governed by the
Cox–Ingersoll–Ross (CIR) dynamics postulated in Cox et al. (1985). In particular, the model put
forward in the present work allows for a non-zero correlation between the exchange rate process and
its instantaneous volatility. According to the model given by (1), the CIR interest rate processes
are independent of one another, and they are also independent of the foreign exchange rate and its
volatility, which in turn is jointly governed by a double exponential jump process, an extension of
Heston’s model.

In the seminal paper by Heston (1993), the author noted that increasing the volatility of volatility
only increases the kurtosis of spot returns and does not capture skewness. In order to capture
the skewness, it is crucial to include also the properly specified correlation between the volatility
and the spot exchange rate returns. However, the Heston model is not always able to fit the
implied volatility smile very well, particularly at short maturities (Gatheral, 2006). Christofferson
et al.(2009), considered a two-factor structure for the volatility in their double Heston volatility
model to enrich the variance process. For a detailed analysis the interested reader is referred to, for
instance, Rouah (2013).

In papers by Bakshi et al. (1997), Bates (1996), and Duffie et al. (2000), the authors showed that
stochastic volatility models do not offer reliable prices for close to expiration derivatives. This moti-
vated Bates (1996) and Bakshi et al. (1997) to introduce jumps to the dynamics of the underlying.
However, as observed by Andersen and Andreasen (2000) and Alizadeh et al. (2002), the addition of
jumps to the dynamics of the underlying is not sufficient to capture the sudden increase in volatility
due to market turbulence. Since the overall volatility in financial markets consists of a highly per-
sistent slow moving and a rapid moving component, Eraker et al. (2003) proposed to introduce a
jump process to the dynamics of the volatility process in order to enhance the cross-sectional impact
on option prices.

Though jumps have very little effect on the shape of the volatility surface for long-dated options,
Gatheral (2006) observed a more significant aspect as to why we consider jumps. The impact on the
shape of the volatility surface is all at the short-expiration end, which further might explain why
the skew is so steep for very short expirations and why the very short-dated term structure of skew
is inconsistent with any stochastic volatility model.

More recently, D’Ippoliti et al. (2010) obtained closed-form solutions, in the spirit of Heston,
for a model with jumps in both spot returns of the underlying asset and its squared volatility. In
the above-mentioned papers, the authors assume constant interest rates. Although the assumption
of constant interest rates leads to highly tractable FX models, empirical results have confirmed
that such models do not reflect the market reality, especially for long-dated hybrid foreign exchange
and interest rate products, such as PRDCs (Power Reverse Dual Currency notes and bonds) or
FX-TARNs (Forex Target Redemption Notes). For these products, the fluctuations of both the
exchange rate and the interest rates are critical, and thus the postulate of constant interest rates
in both economies is clearly inappropriate for reliable valuation and hedging as was pointed out,
for instance, in Chapter 11 of the monograph by Clark (2011). In Ahlip and Rutkowski (2015),
we proposed a hybrid model, which combines methods from the foreign exchange and fixed income
markets. This model is extended here to include double exponential jumps in the squared volatility
of the exchange rate, but still with continuous processes for the domestic and foreign interest rates.
The double exponential jump diffusion model, on the other hand, via the introduction of asymmetric
jumps, is capable of characterizing distributions which are highly skewed and leptokurtic. As shown
by Carr and Wu (2004) and Kou and Wang (2004) options valuation under the double exponential
jump diffusion model leads to the analytic tractability of pricing results, and facilitates efficient
computation of the hedging parameters.

Let us comment briefly on the existing literature in the same vein. Van Haastrecht et al. (2009)
have extended the stochastic volatility model of Schöbel and Zhu (1999) to equity/currency deriva-
tives by including stochastic interest rates and assuming all driving model factors to be instanta-
neously correlated. Since their model is based on Gaussian processes, it enjoys analytical tractability
even in the most general case of a full correlation structure. By contrast, when the squared volatil-
ity is driven by the CIR process and the interest rate is driven either by the Vasicek (1977) or the
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Cox et al. (1985) process, a full correlation structure leads to intractability of equity options even
under a partial correlation of the driving factors. This has been documented by, among others, Van
Haastrecht and Pelsser (2011) and Grzelak and Oosterlee (2011, 2012) who examined, in particu-
lar, the Heston/Vasicek and Heston/CIR hybrid models (see also Grzelak et al. (2012), where the
Schöbel–Zhu/Hull–White and Heston/Hull–White models for equity derivatives are studied). Kuo
et al. derive analytical approximations for finite-horizon American options by considering a double
exponential jump diffusion model. Ramezani et al. (2007) provide an empirical assessment of the
double exponential jump diffusion model using a maximum likelihood estimation procedure. More
recently Mi-Hsiu Chiang et al. (2016) consider pricing currency options under double exponential
jump model, where the interest-rate regime shifts are driven by hidden Markov chains. The authors
have shown that the skewness and Kurtosis, for the 100JPY/USD and the EUR/USD spot-FX rates
under the double exponential jump diffusion model most closely matches the sample data.

Our goal is to derive a semi-analytical solution for prices of plain-vanilla currency options in
a model in which the volatility component is specified by the extended Heston model with double
exponential jumps, whereas the short-term interest rates for the domestic and foreign economies
are governed by the independent CIR processes. The model thus incorporates important empirical
characteristics of exchange rate return variability: (a) the correlation between the exchange rate
and its stochastic volatility, (b) the presence of jumps in the exchange rate and volatility processes
and (c) the random character of interest rates. The practical importance of this feature of newly
developed FX models is rather clear in view of the existence of complex FX products that have a
long lifetime and are sensitive to smiles or skews in the market.

The paper is organised as follows. In Section 2, we set the foreign exchange model examined
in this work. The options pricing problem is introduced in Section 3. The main result, Theorem
4.1 of Section 4, furnishes the pricing formula for currency options. It is worth stressing that the
independence of volatility and interest rates appears to be a crucial assumption from the point of
view of analytical tractability and thus it cannot be relaxed. Numerical illustrations of our method
are provided in Section 5 where the diffusion and jump-diffusion models are compared.

2 The Heston-Double Exponential/CIR Foreign Exchange

Model

Let (Ω,F ,P) be an underlying probability space. Let the exchange rate Q = (Qt)t∈[0,T ], its instan-
taneous squared volatility v = (vt)t∈[0,T ], the domestic short-term interest rate r = (rt)t∈[0,T ], and
the foreign short-term interest rate r̂ = (r̂t)t∈[0,T ] be governed by the following system of SDEs:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dQt = Qt

(
rt − r̂t

)
dt+Qt

√
vt dW

Q
t +Qt− dZ

Q
t ,

dvt =
(
θ − κvt

)
dt+ σv

√
vt dW

v
t + dZv

t ,

drt =
(
ad − bdrt

)
dt+ σd

√
rt dW

d
t ,

dr̂t =
(
af − bf r̂t

)
dt+ σf

√
r̂t dW

f
t .

(1)

We work under the following standing assumptions:

(A.1) Processes WQ = (WQ
t )t∈[0,T ], W

v = (W v
t )t∈[0,T ] are correlated Brownian motions with a

constant correlation coefficient, so that the quadratic covariation between the processes WQ and
W v satisfies d[WQ,W v]t = ρ dt for some constant ρ ∈ [−1, 1].
(A.2) Processes W d = (W d

t )t∈[0,T ] and W f = (W f
t )t∈[0,T ] are independent Brownian motions and

are also independent of the Brownian motions WQ and W v; hence the processes Q, r and r̂ are
independent.

(A.3) The process ZQ
t =

∑NQ
t

k=1
J
Q
k is the compound Poisson process; specifically, the Poisson pro-

cess NQ has the intensity λQ > 0 and the random variables ln(1 + J
Q
k ), k = 1, 2, . . . have the

probability distribution N(ln[1 + µQ] −
1

2
σ2
Q,σ

2
Q); hence the jump sizes (JQ

k )∞k=1
are lognormally

distributed on (−1,∞) with mean µQ > −1.
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(A.4) The process Zv
t =

∑Nv
t

k=1
Jv
k is the compound Poisson process; specifically, the Poisson pro-

cess Nv has the intensity λv > 0 and the jump sizes Jv
k are independent identically distributed

(i.i.d) nonnegative random variables such that Y = log J , has an asymmetric double exponential
distribution with density

νY (y) = p.η1e
−η1y1y≥0 + q.η2e

η2y1y<0, η1 > 1, η2 > 0, (2)

where p, q ≥ 0, p+ q = 1.
(A.5) The Poisson process Nv and sequence of random variables (Jv

k )
∞

k=1
are independent of the

Brownian motions WQ,W v,W d,W f .
(A.6) The model’s parameters satisfy the stability conditions: 2θ > σ2

v > 0, 2ad > σ2
d > 0 and

2af > σ2
f > 0 (see, for instance, Wong and Heyde (2004)).

Note that we postulate that the instantaneous squared volatility process v, the domestic short-
term interest rate r, and the foreign interest rate r̂ are independent stochastic processes. We will
argue in what follows that this assumption is indeed crucial for analytical tractability. For brevity,
we refer to the foreign exchange model given by SDEs (1) under Assumptions (A.1)–(A.6) as the
Heston/CIR jump-diffusion FX model.

3 Foreign Exchange Call Option

We will first establish the general representation for the value of the foreign exchange (i.e., cur-
rency) European call option with maturity T > 0 and a constant strike level K > 0. The prob-
ability measure P is interpreted as the domestic spot martingale measure (i.e., the domestic risk-
neutral probability). We denote by F = (Ft)t∈[0,T ] the filtration generated by the Brownian motions
WQ,W v,W d,W f and the compound Poisson process Zv. We write EP

t ( · ) and Pt( · ) to denote
the conditional expectation and the conditional probability under P with respect to the σ-field Ft,
respectively. In our computations, we will adopt the ‘domestic’ point of view, which will frequently
be represented by the subscript d. Similarly, we will use the subscript f when referring to a foreign
denominated variable. Hence the arbitrage price Ct(T,K) of the foreign exchange call option at
time t ∈ [0, T ] is given as the conditional expectation with respect to the σ-field Ft of the option’s
payoff at expiration, discounted by the domestic money market account, that is,

Ct(T,K) = E
P
t

{

exp

(
−

∫ T

t
ru du

)
CT (T,K)

}

= E
P
t

{

exp

(
−

∫ T

t
ru du

)
(QT −K)+

}

or, equivalently,

Ct(T,K) = E
P

t

{

exp

(
−

∫ T

t
ru du

)
QT1{QT>K}

}

−KE
P

t

{

exp

(
−

∫ T

t
ru du

)
1{QT>K}

}

.

Similarly, the arbitrage price of the domestic discount bond maturing at time T equals, for every
t ∈ [0, T ],

Bd(t, T ) = E
P

t

{

exp

(
−

∫ T

t
ru du

)}

and an analogous formula holds for the price process Bf (t, T ) of the foreign discount bond under
the foreign spot martingale measure (see Musiela and Rutkowski (2005, Chapter 14)).

As a preliminary step towards the general valuation result presented in Section 4, we state the
following well-known proposition (see, e.g, Cox et al. (1985) or Chapter 10 in Musiela and Rutkowski
(2005)). It is worth stressing that we use here, in particular, the postulated independence of the
foreign interest rate r̂ and the exchange rate process Q. Under this standing assumption, the
dynamics of the foreign bond price Bf (t, T ) under the domestic spot martingale measure P can be
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seen as an immediate consequence of formula (14.3) in Musiela and Rutkowski (2005). The simple
form of the dynamics of Bf (t, T ) under P is a consequence of the postulated independence of W f

and WQ (see Assumption (A.2)). This crucial feature underpins our further calculations and thus
it cannot be easily relaxed.

Proposition 3.1. The prices at date t of the domestic and foreign discount bonds maturing at time
T > t in the CIR model are given by the following expressions

Bd(t, T ) = exp
(
md(t, T )− nd(t, T )rt

)
,

Bf (t, T ) = exp
(
mf(t, T )− nf (t, T )r̂t

)
,

where for i ∈ {d, f}

mi(t, T ) =
2ai
σ2
i

log

[
γi e

1
2 bi(T−t)

γi cosh(γi(T − t)) + 1

2
bi sinh(γi(T − t))

]

,

ni(t, T ) =
sinh(γi(T − t))

γi cosh(γi(T − t)) + 1

2
bi sinh(γi(T − t))

,

and

γi =
1

2

√
b2i + 2σ2

i .

The dynamics of the domestic and foreign bond prices under the domestic spot martingale measure
P are given by

dBd(t, T ) = Bd(t, T )
(
rt dt− σdnd(t, T )

√
rt dW

d
t

)
,

dBf (t, T ) = Bf (t, T )
(
r̂t dt− σfnf (t, T )

√
r̂t dW

f
t

)
.

The following result is also well known (see, for instance, Section 14.1.1 in Musiela and Rutkowski (2005)).

Lemma 3.1. The forward exchange rate F (t, T ) at time t for settlement date T equals

F (t, T ) =
Bf (t, T )

Bd(t, T )
Qt. (3)

Since manifestly QT = F (T, T ), the option’s payoff at expiration can also be expressed as follows

CT (T,K) = F (T, T )1{F (T,T )>K} −K1{F (T,T )>K}.

Consequently, the option’s value at time t ∈ [0, T ] admits the following representation

Ct(T,K) = E
P

t

{

exp

(
−

∫ T

t
ru du

)
F (T, T )1{F (T,T )>K}

}

−KE
P
t

{

exp

(
−

∫ T

t
ru du

)
1{F (T,T )>K}

}

.

In what follows, we will frequently use the notation xt = lnF (t, T ) where t ∈ [0, T ].

4 Pricing Formula for the Currency Call Option

We are in a position to state the main result of the paper, which furnishes a semi-analytical for-
mula for the arbitrage price of the currency call option of European style under the Heston-Double
Exponential/CIR Jump Diffusion Model (2).
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Remark 4.1. Since the proof of Theorem 4.1 relies on the derivation of the conditional characteristic
function of the logarithm of the exchange rate, any suitable version of the Fourier inversion technique
or simulation technique can be applied to obtain the option price. For a detailed analysis of these
methods, the interested reader is referred to, for instance, Carr and Madan (1999, 2009) or Lord and
Kahl (2007, 2010) and the references therein, as well as the recent papers by Bernard et al. (2012)
and Levendorskĭi (2012) who developed and examined in detail methods with essential improvements
in accuracy and/or efficiency.

Theorem 4.1. Let the foreign exchange model be given by SDEs (1) under Assumptions (A.1)–
(A.6). Then the price of the European currency call option equals, for every t ∈ [0, T ],

Ct(T,K) = QtBf (t, T )P1

(
t, Qt, vt, rt, r̂t, K

)
−KBd(t, T )P2

(
t, Qt, vt, rt, r̂t, K

)

where the bond prices Bd(t, T ) and Bf (t, T ) are given in Proposition 3.1, and the functions P1 and
P2 are given by, for j = 1, 2,

Pj

(
t, Qt, vt, rt, r̂t, K

)
=

1

2
+

1

π

∫
∞

0

Re

(
fj(φ)

exp(−iφ lnK)

iφ

)
dφ (4)

where the Ft-conditional characteristic functions fj(φ) = fj(φ, t, Qt, vt, rt, r̂t), j = 1, 2 of the random

variable xT = ln(QT ) under the probability measure P̂T (see Definition 4.2) and PT (see Definition
4.1), respectively, are given by

f1(φ) = ct exp

[
λQτ

(
(1 + µQ)

iφe−
1
2 (φ

2
+iφ)σ2

Q − 1
)]

× exp

[
−

(
iφλQµQ +

(1 + iφ)ρ

σv
(vt + θτ)

)]

× exp

[
λvσvτ

(
pη1

σvη1 + (1 + iφ)ρ
+

qη2

σvη2 − (1 + iφ)ρ
− 1

)]

× exp

[
− iφ

(
nd(t, T )rt +

∫ T

t
adnd(u, T ) du

)]

× exp

[
(1 + iφ)

(
nf (t, T )r̂t +

∫ T

t
afnf (u, T ) du

)]
(5)

× exp

[
−G1(τ, s1, s2)vt −G2(τ, s3, s4)rt −G3(τ, s5, s6)r̂t

]

× exp

[
− θH1(τ, s1, s2)− adH2(τ, s3, s4)− afH3(τ, s5, s6)

]

and

f2(φ) = ct exp

[
λQτ

(
(1 + µQ)

iφe−
1
2 (φ

2
+iφ)σ2

Q − 1
)]

× exp

[
−

(
iφλQµQτ +

iφρ

σv
(vt + θτ)

)]

× exp

[
λvσvτ

(
pη1

σvη1 + iφρ
+

qη2

σvη2 − iφρ
− 1

)]

× exp

[
(1− iφ)

(
nd(t, T )rt +

∫ T

t
adnd(u, T ) du

)]

× exp

[
iφ

(
nf (t, T )r̂t +

∫ T

t
afnf(u, T ) du

)]
(6)

× exp

[
−G1(τ, q1, q2)vt −G2(τ, q3, q4)rt −G3(τ, q5, q6)

]

× exp

[
− θH1(τ, q1, q2)− adH2(τ, q3, q4)− afH3(τ, q5, q6)

]
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where the functions G1, G2, G3, H1, H2, H3 are given in Lemma 4.2 and ct equals

ct = exp
(
iφxt

)
= exp (iφ lnF (t, T )) .

Moreover, the constants s1, s2, s3, s4, s5, s6 are given by

s1 = −
(1 + iφ)ρ

σv
,

s2 = −
(1 + iφ)2(1− ρ2)

2
−

(1 + iφ)ρκ

σv
+

1 + iφ

2
, (7)

s3 = 0, s4 = −iφ, s5 = 0, s6 = 1 + iφ,

and the constants q1, q2, q3, q4, q5, q6 equal

q1 = −
iφρ

σv
,

q2 = −
(iφ)2(1 − ρ2)

2
−

iφρκ

σv
+

iφ

2
, (8)

q3 = 0, q4 = 1− iφ, q5 = 0 q6 = iφ.

4.1 Auxiliary Results

The proof of Theorem 4.1 hinges on a number of lemmas. We start by stating the well known result,
which can be easily obtained from Proposition 8.6.3.4 in Jeanblanc et al. (2009).

Let us denote τ = T − t and let us set, for all 0 ≤ t < T , and νZ(·) the double exponential
distribution given by (2) in assumption (A3).

JQ(t, T ) :=

NQ
T∑

k=NQ
t +1

ln(1 + J
Q
k ). (9)

Note that we use here Assumptions (A.3)–(A.5). The property (A.3) (resp. (A.4)) implies that
the random variable JQ(t, T ) (resp. Zv

T − Zv
t ) is independent of the σ-field Ft. Let ν1 stand for

the Gaussian distribution N
(
ln(1 + µQ) −

1

2
σ2
Q,σ

2
Q

)
and let νZ stand for the double exponential

distribution (2) in assumption (A4).

Lemma 4.1. (i) Under Assumptions (A.3) and (A.5), the following equalities are valid

E
P

t

{
exp

(
iφJQ(t, T )

)}
= E

P

t

{
exp

(
iφ

NQ
T∑

k=NQ
t +1

ln
(
1 + JQ

k

))}

= exp

[
λQτ

∫ +∞

−∞

(
eiφz − 1

)
ν1(dz)

]

= exp
[
λQτ

(
(1 + µQ)

iφe−
1
2σ

2
Q(φ2

+iφ) − 1
)]

.

Under Assumptions (A.3) and (A.4), the following equalities are valid for c = a + bi with −η2 ≤
a ≤ η1

E
P

t

{
exp

(
c (Zv

T − Zv
t )
)}

= E
P

t

{
exp

(
c

Nv
T∑

k=Nv
t +1

Jv
k

)}

= exp

[
λvτ

∫
∞

−∞

(ecz − 1) νZ(dz)

]

= exp

[
λvτ

(
pη1

η1 − c
+

qη2

η2 + c
− 1

)]
.
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The next result extends Lemma 6.1 in Ahlip and Rutkowski (2009) (see also Duffie et al. (2000))
where the model without the jump component in the dynamics of v was examined.

Lemma 4.2. Let the dynamics of processes v, r and r̂ be given by SDEs (1) with independent

Brownian motions W v, W d and W f . For any complex numbers µ, λ, µ̃, λ̃, µ̂, λ̂, we set

F (τ, vt, rt, r̂t) = E
P

t

{

exp

(
− λvT − µ

∫ T

t
vu du− λ̃rT − µ̃

∫ T

t
ru du − λ̂r̂T − µ̂

∫ T

t
r̂u du

)}

.

Then

F (τ, vt, rt, r̂t) = exp
[
−G1(τ,λ, µ)vt −G2(τ, λ̃, µ̃)rt −G3(τ, λ̂, µ̂)r̂t

− θH1(τ,λ, µ)− adH2(τ, λ̃, µ̃)− afH3(τ, λ̂, µ̂)
]

where

G1(τ,λ, µ) =
λ[(γ + κ) + eγτ(γ − κ)] + 2µ(eγτ − 1)

σ2
v λ (e

γτ − 1) + γ − κ+ eγτ (γ + κ)
,

G2(τ, λ̃, µ̃) =
λ̃[(γ̃ + bd) + eγ̃τ (γ̃ − bd)] + 2µ̃(eγ̃τ − 1)

σ2
d λ̃ (eγ̃τ − 1) + γ̃ − bd + eγ̃τ (γ̃ + bd)

,

G3(τ, λ̂, µ̂) =
λ̂[(γ̂ + bf ) + eγ̂τ (γ̂ − bf )] + 2µ̂(eγ̂τ − 1)

σ2
f λ̂ (e

γ̂τ − 1) + γ̂ − bf + eγ̂τ (γ̂ + bf)
,

and

H1(τ,λ, µ) =

∫ τ

0

(
G1(t,λ, µ) +

λv

θ

(
pG1

η1 +G1

+
qη2

η2 −G1

))
dt,

H2(τ, λ̃, µ̃) = −
2

σ2
d

ln

(
2γ̃e

(γ̃+bd)τ
2

σ2
d λ̃ (e

γ̃τ − 1) + γ̃ − bd + eγ̃τ (γ̃ + bd)

)

,

H3(τ, λ̂, µ̂) = −
2

σ2
f

ln

(
2γ̂e

(γ̂+bf )τ

2

σ2
f λ̂ (e

γ̂τ − 1) + γ̂ − bf + eγ̂τ (γ̂ + bf )

)

,

where we denote γ =
√
κ2 + 2σ2

vµ, γ̃ =
√
b2d + 2σ2

dµ̃ and γ̂ =
√
b2f + 2σ2

f µ̂.

Proof. For the reader’s convenience, we sketch the proof of the lemma. Let us set, for t ∈ [0, T ],

Mt = F (τ, vt, rt, r̂t) exp

(
− µ

∫ t

0

vu du− µ̃

∫ t

0

ru du− µ̂

∫ t

0

r̂u du

)
. (10)

Then the process M = (Mt)t∈[0,T ] satisfies

Mt = E
P

t

{

exp

(
− λvT − µ

∫ T

0

vu du− λ̃rT − µ̃

∫ T

0

ru du− λ̂r̂T − µ̂

∫ T

0

ru du

)}

and thus it is an F-martingale under P. By applying the Itô formula to the right-hand side in
(10) and by setting the drift term in the dynamics of M to be zero, we deduce that the function
F (τ, v, r, r̂) satisfies the following partial integro-differential equation (PIDE)

−
∂F

∂τ
+

1

2
σ2
vv

∂2F

∂v2
+ λv

∫
∞

−∞

(
F (τ, v + z, r, r̂)− F (τ, v, r, r̂)

)
ν2(dz)

+
1

2
σ2
dr

∂2F

∂r2
+

1

2
σ2
f r̂

∂2F

∂r̂2
+ (θ − κv)

∂F

∂v
+ (ad − bdr)

∂F

∂r

+ (af − bf r̂)
∂F

∂r̂
− (µv + µ̃r + µ̂r̂)F = 0
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with the initial condition F (0, v, r, r̂) = exp(−λv − λ̃r − λ̂r̂). We search for a solution to this PIDE
in the form

F (τ, v, r, r̂) = exp
[
−G1(τ,λ, µ)v −G2(τ, λ̃, µ̃)r −G3(τ, λ̂, µ̂)r̂

− θH1(τ,λ, µ) − adH2(τ, λ̃, µ̃)− afH3(τ, λ̂, µ̂)
]

with

G1(0,λ, µ) = λ, G2(0, λ̃, µ̃) = λ̃, G3(0, λ̂, µ̂) = λ̂,

and

H1(0,λ, µ) = H2(0, λ̃, µ̃) = H3(0, λ̂, µ̂) = 0.

By substituting this expression in the PIDE and using part (ii) in Lemma 4.1, we obtain the following
system of ODEs for the functions G1, G2, G3, H1, H2, H3 (for brevity, we suppress the last three
arguments)

∂G1(τ)

∂τ
= −

1

2
σ2
vG

2
1(τ)− κG1(τ) + µ,

∂H1(τ)

∂τ
= G1(τ) +

λv

θ

(
pη1

η1 +G1(τ)
+

qη2

η2 −G1(τ)
− 1

)

∂G2(τ)

∂τ
= −

1

2
σ2
dG

2
2(τ)− bdG2(τ) + µ̃,

∂H2(τ)

∂τ
= G2(τ),

∂G3(τ)

∂τ
= −

1

2
σ2
fG

2
3(τ) − bfG3(τ) + µ̂,

∂H3(τ)

∂τ
= G3(τ).

By solving these equations, we obtain the stated formulae.

Under the assumptions of Lemma 4.2, it is possible to factorise F as a product of two conditional
expectations. This means that the functions G1 (H1), G2 (H2), and G3 (H3) are of the same form,
except that they correspond to different sets of parameters, θ,κ,σv for G1, H1, ad, bd,σr for G2, H2

and af , bf ,σf for G3, H3. Note, however, that the roles played by the processes v, r and r̂ in our
model are clearly different.

It should also be stressed that no closed-form analytical expression for F (τ, vt, rt, r̂t) is available
in the case of correlated Brownian motions W v,W r,W f . Brigo and Alfonsi (2005), who dealt with
a similar issue in a different context, proposed to use a simple Gaussian approximation, instead
of searching for an exact solution. More recently, Grzelak and Oosterlee (2011) proposed more
sophisticated approximations in the framework of the Heston/CIR hybrid model. We do not follow
this line of research here and we focus instead on finding a semi-analytical solution, since this goal
can be achieved under Assumptions (A.1)–(A.6).

Let us now introduce a convenient change of the underlying probability measure, from the do-
mestic spot martingale measure P to the domestic forward martingale measure PT .

Definition 4.1. The domestic forward martingale measure PT , equivalent to P on (Ω,FT ), is defined
by the Radon-Nikodým derivative process η = (ηt)t∈[0,T ] where

ηt =
dPT

dP

∣∣∣
Ft

= exp

(
−

∫ t

0

σdnd(u, T )
√
ru dW

d
u −

1

2

∫ t

0

σ2
dn

2
d(u, T )ru du

)
. (11)
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An application of Girsanov’s theorem shows that the process WT = (WT
t )t∈[0,T ], which is given

by the equality

WT
t = W d

t +

∫ t

0

σdnd(u, T )
√
ru du, (12)

is the Brownian motion under the domestic forward martingale measure PT . Using the standard
change of a numéraire technique, one can check that the price of the European foreign exchange call
option admits the following representation under the probability measure PT

Ct(T,K) = Bd(t, T )E
PT
t

(
F (T, T )1{F (T,T )>K}

)
−KBd(t, T )E

PT
t

(
1{F (T,T )>K}

)
. (13)

The following auxiliary result is easy to establish and thus its proof is omitted. Recall that
JQ(t, T ) is given by equality (9).

Lemma 4.3. Under Assumptions (A.1)–(A.6), the dynamics of the forward exchange rate F (t, T )
under the domestic forward martingale measure PT are given by the SDE

dF (t, T ) = F (t, T )
(
dZ

Q
t − λQµQdt+

√
vt dW

Q
t + σd nd(t, T )

√
rt dW

T
t − σfnf (t, T )

√
r̂t dW

f
t

)

or, equivalently,

F (T, T ) = F (t, T ) exp

(
JQ(t, T )− λQµQ(T − t) +

∫ T

t
σ̃F (u, T ) · dW̃

T
u −

1

2

∫ T

t
∥σ̃F (u, T )∥

2 du

)

where the dot · denotes the inner product in R3, (σ̃F (t, T ))t∈[0,T ] is the R3-valued process (row
vector) given by

σ̃F (t, T ) =
[√

vt, σdnd(t, T )
√
rt, −σfnf (t, T )

√
r̂t
]

and W̃T = (W̃T
t )t∈[0,T ] is the R3-valued process (column vector) given by W̃T =

[
WQ, WT , W f

]
∗

.

It is easy to check that, under Assumptions (A.1)–(A.6), the process W̃T is the three-dimensional
standard Brownian motion under PT . In view of Lemma 4.3, we have that

Bd(t, T )E
PT
t

(
F (T, T )1{F (T,T )>K}

)

= Bd(t, T )E
PT
t

{

F (t, T ) exp

(
JQ(t, T )− λQµQ(T − t) +

∫ T

t
σ̃F (u, T ) · dW̃

T
u

−
1

2

∫ T

t
∥σ̃F (u, T )∥

2 du

)
1{F (T,T )>K}

}

= QtBf (t, T )E
PT
t

{

exp

(
JQ(t, T )− λQµQ(T − t) +

∫ T

t
σ̃F (u, T ) · dW̃

T
u

−
1

2

∫ T

t
∥σ̃F (u, T )∥

2 du

)
1{F (T,T )>K}

}

.

To deal with the first term in the right-hand side of (13), we introduce another auxiliary probability
measure.

Definition 4.2. Themodified domestic forward martingale measure P̂T , equivalent to PT on (Ω,FT ),
is defined by the Radon-Nikodým derivative process η̂ = (η̂t)t∈[0,T ] where

η̂t =
dP̂T

dPT

∣∣∣
Ft

= exp

(∫ t

0

σ̃F (u, T ) · dW̃
T
u −

1

2

∫ t

0

∥σ̃F (u, T )∥
2 du

)
.

Using Lemma 4.3 and equation (3), we obtain

Bd(t, T )E
PT
t

(
F (T, T )1{F (T,T )>K}

)
= QtBf (t, T )

E
PT
t

(
1{F (T,T )>K}η̂T

)

E
PT
t (η̂T )
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and thus the Bayes formula and Definition 4.2 yield

Bd(t, T )E
PT
t

(
F (T, T )1{F (T,T )>K}

)
= QtBf (t, T )E

P̂T
t

(
1{F (T,T )>K}

)
.

This shows that P̂T is a martingale measure associated with the choice of the price processQtBf (t, T )
as a numéraire asset. We are now in a position to state the following lemma.

Lemma 4.4. The price of the currency call option satisfies

Ct(T,K) = QtBf (t, T ) P̂T

(
QT > K | Ft

)
−KBd(t, T )PT

(
QT > K | Ft

)

or, equivalently,

Ct(T,K) = QtBf (t, T ) P̂T

(
xT > lnK | Ft

)
−KBd(t, T )PT

(
xT > lnK | Ft

)
. (14)

To complete the proof of Theorem 4.1, it remains to evaluate the conditional probabilities aris-
ing in formula (14). By another application of Girsanov’s theorem, one can check that the process
(Q, v, r, r̂) has the Markov property under the probability measures PT and P̂T . In view of Proposi-
tion 3.1 and Lemma 3.1, the random variable xT is a function of QT , rT and r̂T . We thus conclude
that

Ct(T,K) = QtBf (t, T )P1(t, Qt, vt, rt, r̂t, K)−KBd(t, T )P2(t, Qt, vt, rt, r̂t, K) (15)

where we denote

P1(t, Qt, vt, rt, r̂t, K) = P̂T (xT > lnK |Qt, vt, rt, r̂t),

P2(t, Qt, vt, rt, r̂t, K) = PT (xT > lnK |Qt, vt, rt, r̂t).

To obtain explicit formulae for the conditional probabilities above, it suffices to derive the cor-
responding conditional characteristic functions

f1(φ, t, Qt, vt, rt, r̂t) = E
P̂T
t

[
exp(iφxT )

]
,

f2(φ, t, Qt, vt, rt, r̂t) = E
PT
t

[
exp(iφxT )

]
.

The idea is to use the Radon-Nikodým derivatives in order to obtain convenient expressions for the
characteristic functions in terms of conditional expectations under the domestic spot martingale
measure P. The following lemma will allow us to achieve this goal.

Lemma 4.5. The following equality holds

dP̂T

dP

∣∣∣
Ft

= exp

(∫ t

0

√
vu dW

Q
u −

∫ t

0

σfnf (u, T )
√
r̂u dW

f
u −

1

2

∫ t

0

(
vu + σ2

fn
2
f (u, T )r̂u

)
du

)
.

Proof. Straightforward computations show that

dP̂T

dP

∣∣∣
Ft

=
dP̂T

dPT

∣∣∣
Ft

dPT

dP

∣∣∣
Ft

= exp

(∫ t

0

σ̃F (u, T ) · dW̃
T
u −

1

2

∫ t

0

∥σ̃F (u, T )∥
2 du

)

× exp

(
−

∫ t

0

σdnd(u, T )
√
ru dW

d
u −

1

2

∫ t

0

σ2
dn

2
d(u, T )ru du

)

= exp

(∫ t

0

√
vu dW

Q
u +

∫ t

0

σdnd(u, T )
√
ru dW

T
u −

∫ t

0

σfnf (u, T )
√
r̂u dW

f
u

)

× exp

(
−

1

2

∫ T

t

(
vu + σ2

dn
2
d(u, T )ru + σ2

fn
2
f (u, T )r̂u

)
du

)

× exp

(
−

∫ t

0

σdnd(u, T )
√
ru dW

d
u −

1

2

∫ t

0

σ2
dn

2
d(u, T )ru du

)
.
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Using (12), we now obtain

dP̂T

dP

∣∣∣
Ft

= exp

(∫ t

0

√
vu dW

Q
u −

∫ t

0

σfnf (u, T )
√
r̂u dW

f
u −

1

2

∫ t

0

(
vu + σ2

fn
2
f (u, T )r̂u

)
du

)
,

which is the desired expression.

In view of the formula established in Lemma 4.5 and the abstract Bayes formula, to compute
f1(φ) = f1(φ, t, Qt, vt, rt, r̂t), it suffices to focus on the following conditional expectation under P

f1(φ) = E
P
t

{

exp
(
iφxT

)
exp

(∫ T

t

√
vu dW

Q
u −

∫ T

t
σfnf (u, T )

√
r̂u dW

f
u (16)

−
1

2

∫ T

t

(
vu + σ2

fn
2
f (u, T )r̂u

)
du

)}

.

Similarly, in view of formula (11), we obtain for f2(φ) = f2(φ, t, Qt, vt, rt, r̂t)

f2(φ) = E
P

t

{

exp(iφxT ) exp

[
−

∫ T

t
σdnd(u, T )

√
ru dW

d
u −

1

2

∫ T

t
σ2
dn

2
d(u, T )ru du

]}

. (17)

To proceed, we will need the following result, which is an immediate consequence of Lemma 4.3.

Corollary 4.1. Under Assumptions (A.1)–(A.4), the process xt = lnF (t, T ) admits the following
representation under the domestic forward martingale measure PT

xT = xt +

∫ T

t
σ̃F (u, T ) · dW̃

T
u −

1

2

∫ T

t
∥σ̃F (u, T )∥

2 du+ JQ(t, T )− λQµQ(T − t) (18)

or, more explicitly,

xT = xt +

∫ T

t

√
vu dW

Q
u +

∫ T

t
σdnd(u, T )

√
ru dW

T
u −

∫ T

t
σfnf (u, T )

√
r̂u dW

f
u

−
1

2

∫ T

t

(
vu + σ2

dn
2
d(u, T )ru + σ2

fn
2
f (u, T )r̂u

)
du

+

NQ
T∑

k=NQ
t +1

ln(1 + JQ
k )− λQµQ(T − t).

Using equality (16) and Corollary 4.1, we obtain

f1(φ) = E
P

t

{

exp
(
iφxT

)
exp

[∫ T

t

√
vu dW

Q
u −

∫ T

t
σfnf (u, T )

√
r̂u dW

f
u

−
1

2

∫ T

t

(
vu + σ2

fn
2
f (u, T )r̂u

)
du

]}

so that

f1(φ) = E
P

t

{

exp

[
iφ

(
xt +

∫ T

t

√
vu dW

Q
u +

∫ T

t
σdnd(u, T )

√
ru dW

T
u −

∫ T

t
σfnf (u, T )

√
r̂u dW

f
u

)]

× exp

[
−

iφ

2

∫ T

t

(
vu + σ2

dn
2
d(u, T )ru + σ2

fn
2
f (u, T )r̂u

)
du

]

× exp

[∫ T

t

√
vu dW

Q
u −

∫ T

t
σfnf (u, T )

√
r̂u dW

f
u

]

× exp

[
−

1

2

∫ T

t

(
vu + σ2

fn
2
f (u, T )r̂u

)
du

]}

× exp

[
iφJQ(t, T )− iφλQµQ(T − t)

]
.
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For the sake of conciseness, we denote α = 1 + iφ, β = iφ and ct = exp(iφxt). After simplifications
and rearrangement, the formula above becomes

f1(φ) = ct E
P

t

{

exp

[
α

(∫ T

t

√
vu dW

Q
u −

1

2

∫ T

t
vu du

)]

× exp

[
β

(∫ T

t
σdnd(u, T )

√
ru dW

T
u −

1

2

∫ T

t
σ2
dn

2
d(u, T )ru du

)]

× exp

[
− α

(∫ T

t
σfnf (u, T )

√
r̂u dW

f
u +

1

2

∫ T

t
σ2
fn

2
f (u, T )r̂u du

)]

× exp

[
βJQ(t, T )− βλQµQ(T − t)

]}

.

In view of Assumptions (A.1)–(A.6), we may use the following representation for the Brownian
motion WQ

WQ
t = ρW v

t +
√
1− ρ2 Wt (19)

where W = (Wt)t∈[0,T ] is a Brownian motion under P independent of the Brownian motions W v,W d

and W f . Consequently, the conditional characteristic function f1(φ) can be represented in the
following way

f1(φ) = ct E
P

t

{

exp

[
αρ

∫ T

t

√
vu dW

v
u + α

√
1− ρ2

∫ T

t

√
vu dWu −

α

2

∫ T

t
vu du

]

× exp

[
β

(∫ T

t
σdnd(u, T )

√
ru dW

T
u −

1

2

∫ T

t
σ2
dn

2
d(u, T )ru du

)]
(20)

× exp

[
− α

(∫ T

t
σfnf (u, T )

√
r̂u dW

f
u +

1

2

∫ T

t
σ2
fn

2
f (u, T )r̂u du

)]

× exp

[
βJQ(t, T )− βλQ(T − t)µQ

]}

.

By combining Proposition 3.1 with Definition 4.1, we obtain the following auxiliary result, which
will be helpful in the proof of Theorem 4.1.

Lemma 4.6. Given the dynamics (1) of processes v, r and r̂ and formula (12), we obtain the
following equalities

∫ T

t

√
vu dW

v
u =

1

σv

(
vT − vt − θτ + κ

∫ T

t
vu du − (Zv

T − Zv
t )

)
,

∫ T

t
σdnd(u, T )

√
ru dW

T
u −

1

2

∫ T

t
σ2
dn

2
d(u, T )ru du = −nd(t, T )rt −

∫ T

t
adnd(u, T ) du

+

∫ T

t
ru du,

∫ T

t
σfnf (u, T )

√
r̂u dW

f
u +

1

2

∫ T

t
σ2
fn

2
f (u, T )r̂u du = −nf (t, T )r̂t −

∫ T

t
afnf (u, T ) du

+

∫ T

t
r̂u du.

Proof. The first asserted formula is an immediate consequence of (1). For the second, we recall that
the function nd(t, T ) is known to satisfy the following differential equation, for any fixed T > 0,

∂nd(t, T )

∂t
−

1

2
σ2
dn

2
d(t, T )− bdnd(t, T ) + 1 = 0
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with the terminal condition nd(T, T ) = 0. Therefore, using the Itô formula and equality (12), we
obtain

d(nd(t, T )rt) = rt dnd(t, T ) + nd(t, T ) drt

= rt

(1
2
σ2
dn

2
d(t, T ) + bdnd(t, T )− 1

)
dt+ nd(t, T )(ad − bdrt) dt+ nd(t, T )σd

√
rt dW

d
t

=
1

2
σ2
dn

2
d(t, T )rt dt− rt dt+ nd(t, T )ad dt+ nd(t, T )σd

√
rt dW

d
t

= −
1

2
σ2
dn

2
d(t, T )rt dt− rt dt+ nd(t, T )ad dt+ nd(t, T )σd

√
rt dW

T
t .

This yields the second asserted formula, upon integration between t and T . The derivation of the
last one is based on the same arguments and thus it is omitted.

4.2 Proof of Theorem 4.1

The proof of Theorem 4.1 is split into two steps in which we deal with f1(φ) and f2(φ), respectively.

Step 1. We will first compute f1(φ). By combining (20) with the equalities derived in Lemma 4.6,
we obtain the following representation for f1(φ)

f1(φ) = ct E
P

t

{

exp

[
−

αρ

σv
(vt + θτ) +

(
αρκ

σv
−

α

2

)∫ T

t
vu du

+ α
√
1− ρ2

∫ T

t

√
vu dWu −

αρ

σv
(Zv

T − Zv
t ) +

αρ

σv
vT

]

× exp

[
− β

(
nd(t, T )rt +

∫ T

t
adnd(u, T ) du

)
+ β

∫ T

t
ru du

]

× exp

[
α

(
nf (t, T )r̂t +

∫ T

t
afnf (u, T ) du

)
− α

∫ T

t
r̂u du

]

× exp

[
βJQ(t, T )− βλQµQ(T − t)−

αρ

σv
(Zv

T − Zv
t )

]}

.

Recall the well-known property that if ζ has the standard normal distribution then E
(
ezζ
)
= ez

2/2

for any complex number z ∈ C.

Consequently, by conditioning first on the sample path of the process (v, r, r̂) and using the
independence of the processes (v, r, r̂) and W under P and Lemma 4.1, we obtain

f1(φ) = ct exp

[
λQτ

(
(1 + µQ)

βe−
1
2βγσ

2
Q − 1

)]

× exp

[

−

(
βλQµQτ +

αρ

σv
(vt + θτ)

)]

× exp

[

λvσvτ

(
pη1

σvη1 + αρ
+

qη2

σvη2 − αρ
− 1

)]

× exp

[
− β

(
nd(t, T )rt +

∫ T

t
adnd(u, T ) du

)]

× exp

[
α

(
nf (t, T )r̂t +

∫ T

t
afnf (u, T ) du

)]

× E
P

t

{

exp

[
αρ

σv
vT +

(
α2(1− ρ2)

2
+

αρκ

σv
−

α

2

)∫ T

t
vu du

]

× exp

[
β

∫ T

t
ru du− α

∫ T

t
r̂u du

]}

.
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This in turn implies that the following equality holds

f1(φ) = ct exp

[
λQτ

(
(1 + µQ)

βe−
1
2βγσ

2
Q − 1

)]

× exp

[

−

(
βλQµQτ +

αρ

σv
(vt + θτ)

)]

× exp

[
λvσvτ

(
pη1

σvη1 + αρ
+

qη2

σvη2 − αρ
− 1

)]

× exp

[

−β

(
nd(t, T )rt +

∫ T

t
adnd(u, T ) du

)]

× exp

[

α

(
nf (t, T )r̂t +

∫ T

t
afnf (u, T ) du

)]

× E
P

t

{

exp

[
− s1vT − s2

∫ T

t
vu du− s3rT − s4

∫ T

t
ru du− s5r̂T − s6

∫ T

t
r̂u du

]}

where the constants s1, s2, s3, s4, s5, s6 are given by (7). A direct application of Lemma 4.2 furnishes
an explicit formula for f1(φ), as reported in the statement of Theorem 4.1.

Step 2. In order to compute the conditional characteristic function

f2(φ) = f2(φ, t, Qt, vt, rt, r̂t) = E
PT
t

[
exp(iφxT )

]

we proceed in an analogous manner as for f1(φ). We first recall that (see (17))

f2(φ) = E
P
t

{

exp(iφxT ) exp

[
−

∫ T

t
σdnd(u, T )

√
ru dW

d
u −

1

2

∫ T

t
σ2
dn

2
d(u, T )ru du

]}

.

Therefore, using Corollary 4.1, we obtain

f2(φ) = ct E
P

t

{

exp

[
iφ

(∫ T

t

√
vu dW

Q
u +

∫ T

t
σdnd(u, T )

√
ru dW

T
u −

∫ T

t
σfnf (u, T )

√
r̂u dW

f
u

)]

× exp

[
− iφ

(
1

2

∫ T

t

(
vu + σ2

dn
2
d(u, T )ru + σ2

fn
2
f (u, T )r̂u

)
du

)]

× exp

[
−

∫ T

t
σdnd(u, T )

√
ru dW

d
u −

1

2

∫ T

t
σ2
dn

2
d(u, T )ru du

]
× exp

[
iφJQ(t, T )

]
}

.

Consequently, using formulae (12), (19) and Lemma 4.1, we obtain the following expression for f2(φ)

f2(φ) = ct exp

[
λQτ

(
(1 + µQ)

βe−
1
2βγσ

2
Q − 1

)
− βλQµQτ

]

× E
P
t

{

exp

[
β

(
ρ

∫ T

t

√
vu dW

v
u +

√
1− ρ2

∫ T

t

√
vu dWu −

∫ T

t
σfnf (u, T )

√
r̂u dW

f
u

)]

× exp

[
− β

(
1

2

∫ T

t

(
vu + σ2

fn
2
f (u, T )r̂u

)
du

)]

× exp

[
− γ

(∫ T

t
σdnd(u, T )

√
ru dW

d
u +

1

2

∫ T

t
σ2
dn

2
d(u, T )ru du

)]}

.

Similarly as in the case of f1(φ), we condition on the sample path of the process (v, r, r̂) and we use
the postulated independence of the processes (v, r, r̂) and W under P. By invoking also Lemma 4.1,
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we obtain

f2(φ) = ct exp

[
λQτ

(
(1 + µQ)

βe−
1
2βγσ

2
Q − 1

)
− βλQµQτ

]

× E
P
t

{

exp

[
βρ

∫ T

t

√
vu dW

v
u +

β2(1− ρ2)− β

2

∫ T

t
vu du

]

× exp

[
− γ

(∫ T

t
σdnd(u, T )

√
ru dW

d
u +

1

2

∫ T

t
σ2
dn

2
d(u, T )ru du

)]

× exp

[
− β

(∫ T

t
σfnf (u, T )

√
r̂u dW

f
u +

1

2

∫ T

t
σ2
fn

2
f (u, T )r̂u du

)]}

.

Using Lemma 4.6, we conclude that

f2(φ) = ct exp

[
λQτ

(
(1 + µQ)

βe−
1
2βγσ

2
Q − 1

)]

× exp

[
−

(
βλQµQτ +

βρ

σv
(vt + θτ)

)]

× exp

[
λvσvτ

(
pη1

σvη1 + βρ
+

qη2

σvη2 − βρ
− 1

)]

× exp

[
γ

(
nd(t, T )rt +

∫ T

t
adnd(u, T ) du

)]

× exp

[
β

(
nf (t, T )r̂t +

∫ T

t
afnf (u, T ) du

)
]

× E
P

t

{

exp

[
− q1vT − q2

∫ T

t
vu du− q3rT − q4

∫ T

t
ru du− q5r̂T − q6

∫ T

t
r̂u du

]}

with the coefficients q1, q2, q3, q4, q5, q6 reported in formula (8). Another straightforward application
of Lemma 4.2 yields the closed-form expression (6) for the conditional characteristic function f2(φ).

To complete the proof of Theorem 4.1, it suffices to combine formula (15) with the standard
inversion formula (4) providing integral representations for the conditional probabilities

P1(t, Qt, vt, rt, r̂t, K) = P̂T (xT > lnK |Qt, vt, rt, r̂t)

and

P2(t, Qt, vt, rt, r̂t, K) = PT (xT > lnK |Qt, vt, rt, r̂t).

This ends the derivation of the pricing formula for the foreign exchange call option. The price of
the corresponding put option is readily available as well, due to the put-call parity relationship for
currency options (see formula (22) in Section 5). ✷

5 Numerical Results

The goal of the final section is to illustrate our approach by means of numerical examples in which
we apply our FX market model, that is, the Heston/CIR double exponential jump-diffusion model,
and we compare this approach with other related models that were recently proposed in Moretto et
al. (2010) and Ahlip and Rutkowski (2013) to deal with the exchange rate derivatives.

5.1 FX Market Conventions

Let us start by noting that the foreign exchange market differs from equity markets, since the market
quotes for options are not made directly for a family strikes. Indeed, the currency option prices are
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typically quoted in terms of the associated implied volatilities for a given time to expiry τ = T−t and
a fixed value of the forward delta ∆F , that is, a fixed hedge ratio in the forward FX market. Other
possible conventions are based on the spot delta, which refers to a hedge in the spot market, or the
premium-adjusted delta, which refers to the case where the option’s premium is paid in the foreign
currency. All these conventions for market quotes of currency options are based on the explicit
pricing formula obtained for the classic Garman-Kohlhagen lognormal model of the exchange rate
dynamics (see, for instance, Section 4.2 in Musiela and Rutkowski (2005)).

From the Garman-Kohlhagen pricing formula it follows, in particular, that for a given forward
delta ∆F and a quoted implied volatility σ, the corresponding strike price K = K(∆F ) is given by
the following conversion formula

K(∆F ) = F (t, T ) exp
(
− cσ

√
τ N−1(c∆F ) +

1

2
σ2τ

)
(21)

where τ = T − t, we denote by N−1 the inverse of the standard normal cumulative distribution
function, and the marker c satisfies: c = 1 (c = −1, resp.) for the call (put, resp.) currency option.
In view of the conversion formula (21), market quotation of option prices based on the implied
volatility for fixed forward deltas is in fact equivalent to quoting prices for the corresponding fixed
strikes.

According to commonly adopted terminology, the call option with the forward delta ∆F = 25%
is called the 25-delta call. Similarly, the put option corresponding to the forward delta ∆F = −25%
is referred to as the 25-delta put. One of the reasons why the forward deltas are often used in
volatility quotes for FX options is the fact that the forward delta of a call and the absolute value of
the delta of the corresponding put add up to 1 so that, for instance, a 25-delta call (resp., a 75-delta
call) must have the same implied volatility as a 75-delta put (resp., a 25-delta put) according to this
convention.

Another important feature is that the currency derivatives are based on the notion of the at-
the-money forward (ATMF) exchange rate, that is, the forward exchange rate F (t, T ) obtained by
exploiting the interest rate parity implicit in equation (3). It can be checked that the forward delta
of the ATMF call option is not equal exactly to 0.5 and thus the ATMF call does not coincide with
the 50-delta call. Recall also that the universal put-call parity formula for plain-vanilla currency
options reads

Ct(T,K)− Pt(T,K) = QtBf (t, T )−KBd(t, T ) (22)

where Ct(T,K) and Pt(T,K) are prices of the currency call and put options, respectively. In
particular, the prices of ATMF call and put options are equal in any arbitrage-free market model;
for this reason, the ATMF rate is also known as the ATM-value-neutral strike.

An alternative convention is to use the ATM-delta-neutral strike, that is, the level of the strike
K for which the absolute values of forward deltas of call and put options coincide, so that they
are both equal to 0.5. This is in fact the prevailing convention for the currency options and thus
henceforth by the ATM call we will mean the ATM-delta-neutral call. For a more detailed discussion
of foreign market conventions, the interested reader may consult, for instance, Clark (2011), Hakala
and Wystup (2002) or Reiswich and Wystup (2010, 2012).

By convention, we assume hereafter that USD is the domestic currency, whereas EUR is the
foreign currency. Note that the EUR/USD exchange rate is the price of one Euro in US dollars.
Equation (21) is suitable in the case of EUR/USD option where the premium is paid in US dollars,
that is, the domestic currency. It would be incorrect, for example, for USD/JPY option where
the premium is also paid in US dollars – indeed, in that case the market convention based on the
premium-adjusted delta would be more suitable.

5.2 Market Data

In our numerical results presented in what follows, we make use (with the kind permission of the
authors) of the data for the EUR/USD options and bond yields from the paper by Moretto et al.
(2010) (see page 469 therein). Note that positive (resp. negative) values of the forward delta ∆F
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correspond to market quotes for call (resp. put) options. The EUR/USD spot exchange rate on
June 13, 2005 was Q0 = 1.2087.

∆F -10% -15% -25% ATM
(50%)

25% 15% 10%

1M 10.36% 10.09% 9.73% 9.30% 9.15% 9.18% 9.25%
2M 10.28% 10.01% 9.65% 9.25% 9.15% 9.22% 9.31%
3M 10.22% 9.95% 9.62% 9.25% 9.19% 9.28% 9.39%
6M 10.23% 9.95% 9.64% 9.35% 9.39% 9.55% 9.74%
9M 10.22% 9.96% 9.96% 9.40% 9.49% 9.68% 9.88%
1Y 10.24% 9.98% 9.69% 9.45% 9.56% 9.77% 9.99%

Table 1: Market implied volatilities for EUR/USD options on June 13, 2005 (original source of data:
Banca Caboto S.p.A. – Gruppo Intesa, Milano).

Rates rd rf

1M 3.14% 2.09%
2M 3.22% 2.09%
3M 3.32% 2.10%
6M 3.50% 2.09%
9M 3.60% 2.09%
1Y 3.68% 2.09%

Table 2: Market domestic (USD) and foreign (EUR) interest rates on June 13, 2005 (original source
of data: Banca Caboto S.p.A. – Gruppo Intesa, Milano).

5.3 Comparison of Model Prices

We provide a comparison of option prices for the foreign exchange version of Heston’s model, the
Heston/CIR (HCIR) model examined in Ahlip and Rutkowski (2013), and the Heston/CIR/ Double
Exponential Jump-Diffusion (HCIR–DEJD) model put forward in this paper. According to equation
(1), the dynamics of the exchange rate Q and its squared volatility v involve seven parameters, which
are listed in Table 3. In addition, one needs to specify three parameters for each of the interest rates,
rd and rf . For each maturity date and delta, the initial values of the volatilities v0, which are the
square of the implied volatilities from Table 1, are listed in 5 (this particular choice is suggested by
formula (5.1) in D’Ippoliti et al. (2010)).

It should be acknowledged that we do not attempt to calibrate the three alternative models
compared in this paper to market data. We limit ourselves to illustrating the impact of additional
components of a model on prices of long-date options, and thus our choice of parameters is somewhat
arbitrary.

θ κ η1 η2 λv p ρ

0.02606 0.091 25 25 3 0.5 0.9786

Table 3: Parameter values for the exchange rate and its squared volatility.

The parameter values for the CIR dynamics of domestic and foreign interest rates are given
in Table 4. It is fair to say that the choice of these parameters was rather artificial and made
for illustrative purposes only. The initial values of the domestic and foreign short-term rates were
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inferred by matching, independently for each maturity date, the zero-coupon bond yield given in
Table 2 with the bond pricing formula from Proposition 3.1. In the case of Heston’s model, the bond
yield coincides with the constant interest rate for each particular maturity. Needless to say that we
use the same values of parameters for all models, although not all parameters are actually employed
in every model.

ad bd σd af bf σf

0.0332 0.03 0.25 0.021 0.024 0.24

Table 4: Parameter values for domestic and foreign interest rates.

In Table 5, we report prices of ATM calls for expiries ranging from one month to one year. We
use here the ATM volatilities for different maturities, as given in Table 1, and the interest rates from
Table 2. In all examples reported here, the strikes are computed using the conversion formula (21).
We observe that the prices obtained using the HCIR–DEJD model are substantially higher than
the prices obtained for the Heston and HCIR models, especially for options with longer maturities.
Although we only deal here with plain-vanilla currency options, our numerical results support the
conjecture that jumps in the volatility dynamics and the uncertain character of interest rates are
likely to play an important role in valuation of long-dated hybrid foreign exchange derivatives, such
as PRDCs or FX-TARNs.

Maturity Initial Vols Strike Heston
price

HCIR price HCIR–DEJD price

1M 0.008649 1.21019 0.0134635 0.0134861 0.0134874
2M 0.008556 1.21184 0.0198044 0.0198958 0.0199012
3M 0.008556 1.21369 0.0252715 0.0254794 0.0254927
6M 0.008742 1.21991 0.0399683 0.0408467 0.0408692
9M 0.008836 1.22652 0.0533947 0.0537438 0.0557655
1Y 0.009025 1.23357 0.0664330 0.0676871 0.0714555

Table 5: Prices of ATM call options using data of June 13, 2005.
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