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Abstract

This paper demonstrates a novel and efficient unsupervised clustering method with the combination of a self-
organizing map (SOM) and a convolutional autoencoder. The rapidly increasing volume of radio-astronomical data
has increased demand for machine-learning methods as solutions to classification and outlier detection. Major
astronomical discoveries are unplanned and found in the unexpected, making unsupervised machine learning
highly desirable by operating without assumptions and labeled training data. Our approach shows SOM training
time is drastically reduced and high-level features can be clustered by training on auto-encoded feature vectors
instead of raw images. Our results demonstrate this method is capable of accurately separating outliers on a SOM
with neighborhood similarity and K-means clustering of radio-astronomical features. We present this method as a
powerful new approach to data exploration by providing a detailed understanding of the morphology and
relationships of Radio Galaxy Zoo (RGZ) data set image features which can be applied to new radio survey data.
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1. Introduction

Large radio continuum surveys have played a key role in our
understanding of the evolution of galaxies (Norris 2017a).
Exceptionally large surveys such as Low-frequency Array
(LOFAR), Two-meter Sky Survey (LOTSS; Shimwell et al.
2017) and the Evolutionary Map of the Universe (EMU; Norris
et al. 2011) are expected to detect 30 million and 70 million
radio sources respectively. The sheer scale and complexity of
these data sets is pushing researchers towards automated
techniques such as machine learning with neural net-
works (NNs).

NNs are networks of functions termed “neurons” that
operate as function approximators. A typical implementation of
NNs include the multi-layer perceptron (MLP), as a class of
feed-forward NNs with multiple neuron layers. In these MLPs,
neuron parameters are typically learned via backpropagation
(Dreyfus 1973), where weights are updated using gradient
descent of a given loss function as a difference measure
between target and predicted output.

A NN trained to classify images with a specific orientation
and scale will, however, encounter difficulties when classifying
the same training image at an untrained angle or scale
(Perantonis & Lisboa 1992). Affine transformations such as
rotation, scaling, and translation, are a common cause of
machine-learning prediction errors. A classical solution
involves augmenting a training set with random rotations and
scaling at the cost of training time. Alternatively, a network can
be made invariant to scaling by adding convolutional and max-
pooling layers. Rotational invariance is more easily solved with
the addition of rotated training images.
NNs such as SkyNet (Graff et al. 2014) have accurately

classified astronomical data using supervised learning of
preclassified examples. Efforts to use these supervised neural
networks have been supported with citizen science projects
such as the Radio Galaxy Zoo (Banfield et al. 2015), which has
created large labeled data sets of radio sources. This RGZ data
set has been used to successfully train classifiers for source
classification (Wu et al. 2019; Lukic et al. 2018) and radio
source host galaxy cross-identification (Alger et al. 2018).
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However, this supervised training is not always suitable in
outlier detection and separating source complexity as it requires
a more complete knowledge of all potential classes of new
unseen data. Given that most of the major discoveries in
astronomy have been unplanned (Norris 2017b), this is a major
shortcoming.

Unsupervised learning techniques bridge this gap by
working with no assumptions about input data. An autoencoder
is an example of unsupervised learning, designed for
dimensionality reduction. Autoencoders work by extracting
and compressing the features of input images into a feature
vector (Sanger 1989). The ideal autoencoder is trained to
perfectly compress and restore input data without loss. The
layer configuration of a typical NN autoencoder variant (as
shown in Figure 1) uses an MLP architecture with back-
propagation learning to reduce input data to a compact feature
representation on the encoding side before returning it to its
original form on the decoding side. The layer configuration of
the encoder and decoder are usually very similar. Autoencoder
prediction loss is given as the difference between input data
and the decoded output. This loss is naturally an indicator of
the performance of the network but is also sensitive to
differences between an input image and the training set. Since
loss is calculated from the input data, a label set is not required
and the network can be trained unsupervised. Autoencoders
have seen success in many image processing applications with
the addition of convolution, max pooling, and denoising
architecture (Xie et al. 2012).

Abstract relationships and topology in large data sets can be
interpreted by visualizing auto-encoded feature vectors with

dimensionality reduction methods such as Principle Comp-
onent Analysis (Hotelling 1933, PCA) onto a learning
manifold. More complex approaches, such as a self-organizing
map (SOM; Kohonen 1997) have been recognized as especially
powerful unsupervised data exploration tools in astronomy
(Polsterer et al. 2015; Tasdemir & Merényi 2009). By adapting
to the shape of encoded latent vectors, these SOMs can display
various topological relationships and morphology distributions.
Moreover, these algorithms have been augmented to produce
labeled classification and source separation with K-means
clustering (Lloyd 1982).
This paper demonstrates a novel and efficient unsupervised

clustering by combining a self-organizing map with a
convolutional autoencoder as a variation of the convolutional
neural network (CNN). Using our proposed method, we show
that SOM training time is drastically reduced by training on the
compressed autoencoder feature vectors of the RGZ image.
This method is demonstrated as a powerful data exploration
and visualization tool. This approach shows K-means cluster-
ing of trained SOM weights as a method of grouping radio-
astronomical features in these RGZ images and effectively
separating sources by their complexity. We demonstrate our
method as an effective and efficient solution to understanding
the morphology and relationships of RGZ images that can be
applied to unexplored fields for discovery purposes. This
approach is in contrast to typical CNN applications in
astronomy such as Gravet et al. (2015), which instead create
a system for morphological prediction and classification
without this element of exploration. The use of abstracted
image representations as auto-encoded feature vectors are a
significant novel aspect of our method and offer great
advantages in computational efficiency compared with this
prior work and other CNN implementations such as the system
in Dieleman et al. (2015), which also uses random rotation
training augmentations for rotational invariance, but are trained
on complete images alone.

2. Data

Radio Galaxy Zoo is a citizen science project for radio image
classification by volunteers via web interface (Banfield et al.
2015). The majority of the radio image data in Radio Galaxy
Zoo comes from the 1.4 GHz Faint Images of the Radio Sky at
Twenty Centimetres (FIRST) survey catalog (Becker et al.
1995) version 14 March 2004. FIRST covers over 9000 square
degrees of the northern sky down to a 1σ noise level of
150 μJy beam−1 at 5″ resolution. We use a total of 80,000 FIRST
images from the RGZ Data Release 1 catalog (O. I. Wong 2019,
in preparation).
Hand-labeled RGZ annotations of the data set contain the

number of components for every resolved source in the image
(Banfield et al. 2015). These annotations also include the
number of brightness peaks above a set threshold within an

Figure 1. Network configuration of a simple fully connected NN variant
autoencoder, featuring the encoder input layer, the downsampled latent feature
vector layer, and the reconstructed decoder output layer.
(A color version of this figure is available in the online journal.)
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image. We have encoded these labels as components-peaks, e.g
single component with a single peak is 11, two components
with two peaks is 22. Table 1 shows that the largest fraction of
the data set contains single-component, single-peak sources.

3. Image Preprocessing

Radio images are contaminated by remnants of the
instrument’s point-spread function (PSF). This contamination
is often a major component of the feature space of the RGZ
training set. These elements must be removed, as we found that
without proper preprocessing, clustering resulted in two
classes: “noisy” and “not noisy,” distinguished only by
intensity distribution. Early preprocessing methods used in
this investigation were effective at removing noise but had a
tendency to remove faint sources and produce artifacts. As a
result, we adopted the preprocessing method of Galvin et al.
(2019) with results shown in Figure 2. This approach corrects
blank pixels in images at the edge of the FIRST image mosaic,
sigma clips and normalizes pixel intensity using the following
procedure:

1. Blank pixel regions found in images close to the edge of
the FIRST mosaic are corrected. This correction replaces
these masked values with a random sample of the mean
and standard deviation of valid pixels around the outer-
edge region of the image (assuming a normal distribu-
tion). These samples are extracted from the outer regions
of the image with few astronomical features to properly
sample the background noise.

2. Noise is removed and background flux is corrected with
sigma clipping. This operation subtracts the mean
background pixel value and clips all pixel intensities
below 1σ to zero.

Figure 2. RGZ image preprocessing (a), (b), and (c) as unprocessed FIRST images. Images (d), (e), and (f) show the preprocessing output with noticeable
improvement to noise, where a large portion of the background pixels are set to zero.

Table 1
RGZ DR1 Classes by Population

RGZ Label Population Division Category

11 0.6110 Simple
12 0.1533 Complex
13 0.0153 Complex
14 0.0020 Anomalous
15 0.0003 Anomalous
16 0.0001 Anomalous
22 0.1438 Complex
23 0.0195 Complex
24 0.0028 Anomalous
33 0.0340 Complex
34 0.0053 Anomalous
35 0.0008 Anomalous
36 0.0003 Anomalous
44 0.0068 Anomalous
45 0.0014 Anomalous
46 0.0004 Anomalous
55 0.0020 Anomalous
56 0.0005 Anomalous
57 0.0002 Anomalous
67 0.0002 Anomalous

Note. All point sources (RGZ label 11) are categorized as simple; all sources
having more than one component or peak as are categorized as complex; and any
source with more than three components or peaks is categorized as anomalous.
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3. Intensity scaling is applied to normalize the global
intensity of each image.

4. All images are additionally cropped for the purposes of
this paper, from 132×132 pixels to the center
120×120 pixels to reduce the data set size while
preserving salient features.

4. Method

In this section, we outline our method of reducing RGZ
images with convolutional autoencoding to a compact feature
vector for clustering and visualization using a SOM and
K-means clustering. These methods were developed using

Figure 3. Overall pipeline configuration with the convolutional autoencoder architecture and self-organizing map used in this paper. This network compresses input
images with 14400 elements to the latent feature vector with 900 elements for clustering. Encoder and decoder architecture is identical with three convolutional layers
at 1, 32, and 1 layers deep, selected experimentally. The SOM weights are initialized using PCA and trained on the encoded latent vectors. Learned SOM weights are
reconstructed using the decoder network of the autoencoder to display an approximation of the learned radio-astronomical features. K-means clustering is applied to
SOM weights and labeled for verification to compare the map clusters against RGZ labels.
(A color version of this figure is available in the online journal.)

Table 2
Outline of Final Optimized Autoencoder Architecture and Layer Configuration, Where All Convolutional Layers Use LReLU Activation Functions

Network Section Layer Function Input Filter Size Stride

Encoder 0 Input 120×120×1 L L
1 Convolution 1 120×120×1 5×5×1 1×2×2×1
2 Convolution 2 60×60×1 5×5×32 1×2×2×1
3 Convolution 3 30×30×1 5×5×1 1×2×2×1
4 Max-Pool 1 30×30×1 3×3×1 1×1×1×1

Center 5 Latent Vector 30×30×1 L L

Decoder 6 De-Pool 1 30×30×1 3×3×1 1×1×1×1
7 Convolution 4 30×30×1 5×5×1 1×2×2×1
8 Convolution 5 60×60×1 5×5×32 1×2×2×1
9 Convolution 6 120×120×1 5×5×1 1×2×2×1
10 Output 120×120×1 L L
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Python with a 24 core Intel(R) Xeon(R) Central Processing
Unit (CPU) E5-2650 v4 at 2.20 GHz. We implemented our
system using a number of Python machine-learning packages.
The Google Tensorflow Machine Learning Library (Abadi
et al. 2016) was used to create the autoencoder network, and
Somoclu library (Wittek et al. 2013) was used to implement
the SOM.

4.1. Affine Invariant Convolutional Autoencoders

In our method, we extract the latent relationships of RGZ
image features using a convolutional autoencoder.
We use a convolutional autoencoder with three convolu-

tional layers trained on a random sample of 10,000 images and
validated on a separate set of 10,000 images. Table 2 outlines
the implemented NN autoencoder with a MLP architecture. The
architecture was chosen experimentally through a brief set of
trials to determine the best performing configuration. All
convolutional layers use the Leaky Rectified Linear Unit

Figure 4. Convolutional autoencoder prediction of RGZ input images after three training epochs. Top row: Original preprocessed input with pixel intensity scale bars,
Middle row: trained autoencoder prediction also with pixel intensity scale bars, Bottom row: Difference image between predicted and original image, with scale bars
showing the difference in pixel intensity.

Figure 5. Autoencoder error per batch as mean squared difference between
input target image and reconstructed image.
(A color version of this figure is available in the online journal.)
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activation function (LReLU; Maas et al. 2013) given its
demonstrated success (LeCun et al. 2015). All activation
functions in this network use an activation function slope of
0.2. Additionally, the Adaptive Moment (Adam; Kingma &
Ba 2014) optimizer was chosen with a Tensorflow default
learning rate of 0.01 due to its considerable use and success as
a simple, computationally efficient and effective method in
training large networks (Ruder 2016). We use a small batch
size of 16 images during training. Small batch sizes in this
range have been previously shown to allow autoencoder
training to converge on solutions faster than larger batch sizes
(Wang et al. 2017)

The encoder output layer here is a max-pooling operation,
with the decoder input layer restoring the latent vector to its
dimensions before max pooling with a linear interpolator. A
latent vector with a 900×1 shape is the consequence of the
number and dimensions of kernels used in the network. These
dimensions can be modified by scaling the input image;
however, it was found that training converged quickly with this
900×1 latent vector. The dimensions of this vector represent
a significant reduction to the original image dimensions

(120×120, 14400×1) while still containing sufficient free
parameters to preserve information for decompression with
minimum error.
Loss is calculated as the pixel mean square error (MSE)

between the autoencoder prediction image and the input image,
averaged across the batch. We investigate rotational invariance
by also training on images randomly rotated during training.
This rotational invariance ideally prevents clustering methods
from recognizing rotation as a feature distinguished enough to
separate it from its class. As the autoencoder is still being
trained on rotation, these features will still be encoded into the
latent vectors but with less weight.

4.2. Self-organizing Maps

Self-organizing maps (SOM) are data analysis methods used
in unsupervised clustering and data exploration. SOMs create
similarity maps or learning manifolds of input data where
distinct groups of neurons reflect latent clusters in the data. A
SOM models data sets by iteratively updating a grid of neuron
weight vectors mt. This is achieved by moving toward similar
data points x(t) on the SOM manifold by refining neurons

Figure 6. 20×20 toroidal SOM UMAT trained using latent vectors produced by an autoencoder without random rotation training augmentations. Each neuron is
displaying false color decoded neuron weight images at 120×120 pixels.

(A color version of this figure is available in the online journal.)
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weights with a neighborhood distance function hci of each
neuron i, by a decaying learning rate α which is balanced to
let all neurons stabilize in optimal time, as characterized in
Equation (1). A well-trained SOM after m epochs will visualize
the distribution of the input RGZ training data as various high-
level topological relationships and morphology distributions:

m t m t t h t x t m t1 . 1i i ci ia+ = + -( ) ( ) ( ) · ( )[ ( ) ( )] ( )

We trained our SOM on a random sample of 30,000
autoencoder latent vectors and validated with a separate 30,000
latent vectors. Neither set includes encoded RGZ images used
in autoencoder training or validation to ensure the system
remains relatively generalizable. This training was conducted
with a focus on efficiency and demonstrating reasonable
clustering using the following procedure:

1. Initialize SOM grid neurons with a principle component
analysis (PCA) learning manifold of the latent feature
vector set. This approach allows the SOM to model an
already delineated PCA space.

2. Select a random latent feature vector from the training set.

3. Locate best matching unit (BMU) neurons as the
“closest” neuron to the selected data point. A common
and reliable distance metric used to calculate this is
Euclidean distance.

4. Move all neuron weights within the neighborhood
toward the data point by updating neuron weights mi(t)
as a function of neighborhood function hci(t), decay
function σ, and learning rate α(t), as shown in
Equation (2). This neighborhood function can be
represented with several shapes by their radius; namely,

Linear:

h h 2ci c0s= ( )

and Gaussian:

h e , 3ci
D nc ni,

2 2= -
s ( )

( )

where exponential decay is given by

e 4exp
ts = -t ( )

Figure 7. 20×20 toroidal SOM UMAT trained using latent vectors produced by an autoencoder with random rotation training augmentations. Each neuron is
displaying false color decoded neuron weight images at 120×120 pixels.
(A color version of this figure is available in the online journal.)
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and linear decay:

t
, 5linears

t
= - ( )

where τ is a decay constant, usually given as the number
of training epochs. D(x, y) is given as the distance
function (Euclidean distance for the purposes of this
paper) between the weight vector of the current excited
neuron nc and weight vector of the winning neuron ni on
the SOM grid position i.

5. Update learning rate and radius based on respective input
decay rates. Similar to learning rate decay, this
neighborhood decay function can be expressed with an
exponentially or linearly decaying σ:

t 0 6a a s=( ) ( ) ( )

6. Iterate until a training epoch stop condition is met or
learning and neighborhood rates have decayed to a limit
or zero. In our approach, each iteration of the full data set
is considered an epoch as the entire data set is taken into
account with no mini-batch training.

The SOM output is a set of learned neuron weight vectors
associated to locations on the SOM grid. We interpret these
vectors and locations using a unified distance matrix (Ultsch 1993,
UMAT). This UMAT is visualized as a heat map of the Euclidean
distance between each neuron and its neighborhood. We display
the learned weights of each neuron by reconstructing the weight
vector as an image with the decoder side of the autoencoder.
Given an appropriately trained SOM will contain weights mapped
to the latent vector training set, they can ideally be reconstructed
into an approximation of the radio-astronomical features encoded
into the neuron weight. We display these weights and the RGZ
image of the closest matching latent vector on each neuron over
the UMAT. Additionally, we assess the ability of the SOM to
separate complexity and anomalies by plotting the distribution of
the UMAT distance value of each SOM neuron and color coding
the closest matching RGZ label and source classification of each
neuron.

4.3. K-means Clustering

We segment the SOM unified distance matrix (UMAT) in 4
and 8 clusters using the K-means algorithm (Lloyd 1982). This

Figure 8. 20×20 toroidal SOM UMAT trained using latent vectors produced by an autoencoder without random rotation training augmentations. Each neuron is
displaying the RGZ image with the closest matching latent vector transformation to the learned neuron weight.
(A color version of this figure is available in the online journal.)
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algorithm groups objects by assigning inputs a cluster based on
a metric such as Euclidean distance. This is an iterative process
where the distance between each cluster pair is calculated as the
average distance of its consistent objects. Input clusters are
continually refined based on this distance until the changes in
each cluster reach a stop condition. These clusters are discrete,
where an object is assigned to only one cluster. We use these
clusters as proxies for complex and simple feature vectors on
the SOM. K-means clusters of K=4 and K=8 clusterings
were chosen solely to demonstrate the general clustering ability
of the system with the 20×20 sized SOM used in this paper.
The K-means clustering is conducted on the learned weight
vectors of each neuron and was implemented using the Scikit
learn package (Pedregosa et al. 2011).

We display K-means clustering results by coloring each
neuron on the UMAT grid to indicate its associated cluster
Entropy, Ê is also used here as a metric to describe the
distribution labels in the matching data samples (images) of
each neuronʼs receptive field:

P
n

N
, 7i

i=ˆ ( )

E P Plog , 8
i

i i2å= -ˆ ˆ ˆ ( )

where ni is the number of class occurrences i and N the total
number of occurring classes. A low entropy indicates good
consensus where most images matching a given neuron have
the same label. Conversely, a high entropy indicates the
matching images of a neuron have a wide range of different
labels. We normalize this entropy for clarity to a range from 0
to 1.
The complete system outlined in this method section is

shown in Figure 3.

5. Results

This section outlines the results and performance of our
approach at each stage of the method.

5.1. Autoencoder Training and Image Reconstruction

The autoencoder trained on RGZ images demonstrates
successful compression and decompression across the data
set. This is demonstrated in Figure 4 where the reconstructed

Figure 9. 20×20 toroidal SOM UMAT trained using latent vectors produced by an autoencoder with random rotation training augmentations. Each neuron is
displaying the RGZ image with the closest matching latent vector transformation to the learned neuron weight.
(A color version of this figure is available in the online journal.)
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image strongly approximates the input image, the general
morphology and most of the peak and component counts.
From this figure, we determine the autoencoder is capable of
recognizing and preserving enough key image features to
successfully predict the original image from the compressed
latent vector. The difference images in the figure show the
autoencoder loses most fidelity around the edges of regions and
reconstructs background noise with low error. Blurring in the
reconstructed image has a square kernel shape and is expected

due to the shape of the max pooling and convolutional layers.
Autoencoder difference images also show the background
noise of each image. Additional layers and training may allow
the autoencoder to better generalize the data set image features
to remove this blurring and background noise.
Figure 5 indicates that training with random rotation

augmentations allows the autoencoder to converge on a
solution faster and with slightly lower error than training
without random rotation augmentations, despite training on the
same training set. Faster convergence with the random rotations
is apparent early in training even though the network has not
yet been trained on more than one rotation per image. This is
likely the result of increased variance in the images. This
variance may be caused by the rotation of any remnants of the
instrument PSF which are ordinarily oriented across all
images. Similar effects have been observed with increased
variance in autoencoder training using random noise injection
which has been shown to improve autoencoder training
(Vincent et al. 2010).

Figure 10. Distribution of neuron UMAT distance value from the 20×20 toroidal SOM UMAT trained with RGZ latent vectors produced by an autoencoder with
random rotation training augmentations (a) and (b), and without random rotation training augmentations (c) and (d). Color coding in (a) and (d) indicates the RGZ
label of the four most dominant labeled RGZ validation images matching each neuron. Color coding in (b) and (e) display the class of the labeled source as simple
(RGZ 11), complex (not RGZ 11) and anomalous (RGZ label with more than three peaks or components).
(A color version of this figure is available in the online journal.)

Table 3
Cluster Population and Entropy Statistics for the 20×20 Toroidal SOM

UMAT with K=4 Clusters

K-means Cluster Population Minimum Maximum Mean
Cluster Over Map Entropy Entropy Entropy

0 0.278 0.00 1.00 0.46
1 0.460 0.00 0.70 0.23
2 0.118 0.04 0.98 0.52
3 0.145 0.05 0.84 0.43
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The average training time for this autoencoder using random
rotation augmentations and with an unaugmented training set is
26.51 and 25.17 seconds per epoch of 10,000 images
respectively. Figure 5 suggests that training has converged by
the 3rd epoch after the 1500th batch for both training methods.
At this epoch, the total training time is 79.53 seconds and 75.51
seconds for the random rotation and normal training conditions
respectively. The slight increase in training time between these
two training approaches is negligible and likely the conse-
quence of performing the rotation operation on each training
image. The time to encode 30,000 RGZ images for SOM
training or validation is 252.75 seconds at an average of 0.0084
of a second per image. While the random rotation augmentation
results in a total encoding time of 440.25 seconds at an average
of 0.015 of a second per image.

5.2. Self-organizing Map of Latent Image Vectors

The self-organizing map (Kohonen 1997) was trained to
produce a 20×20 neuron toroidal UMAT as displayed in

Figures 6–9. This map was created in 25.528 seconds with an
average of 2.127 seconds per epoch for 12 epochs. We trained
the SOM using a linear learning rate and neighborhood decay
function, with a Gaussian neighborhood function. This
configuration was chosen as it was the set of training hyper-
parameters that provided the most accurate modeling of the
RGZ images. An initial learning rate of 0.01 was chosen as a
default in a manner similar to the selection of the autoencoder
learning rate. The initial rate was decayed during training based
on the linear decay function toward 0.001. This decay occurred
over 12 training epochs, which was found to sufficiently model
the training set. These many epochs were found to be sufficient
to model the latent vector features and is similar to Geach
(2012), which also use a nominal 10 epochs for training.

Both UMATs trained on latent vectors with and without
random rotation augmentations are shown with an overlay of
the decoded neuron weights and each neuron’s closest
matching RGZ images. In both training cases, these clearly
show the morphology distribution of RGZ image features
where the Euclidean distance between the learned weight of
each neuron and their neighboring neurons displayed as a heat
map. In these tests, the decoded weight map illustrates which
relationships and morphologies have been modeled, while the
map containing the closest matching images illustrates the real
radio-astronomical features that match the neuron weights.
The morphological clusters in these maps are not highly

discrete with neurons essentially representing a probability
distribution of latent feature vectors. These clustered regions
are subclustered by orientation, with similarly oriented objects
clustered together with gradual transitions between classes. We
expect to see this gradual transition between classes of images
given these objects do not have entirely discrete classifications.

Table 4
Divisions of Clusters Based on the Label of the Closest Matching RGZ Image, Matching Clustered Label Divisions, and Entropy Statistics for Each of the K=4

Clusters in the 20×20 Toroidal SOM UMAT

Cluster RGZ Division of Division of Mean Minimum Maximum
ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In
Cluster

0 22 0.622 0.742 0.61 0.12 1.00
11 0.369 0.186 0.21 0.00 0.52

1 11 0.88 0.733 0.21 0.0 0.3
12 0.12 0.256 0.38 0.2 0.7

2 12 0.511 0.279 0.50 0.15 0.75
22 0.404 0.204 0.63 0.34 0.98
11 0.085 0.018 0.21 0.04 0.48

3 12 0.672 0.453 0.52 0.18 0.84
11 0.241 0.063 0.12 0.05 0.39
22 0.086 0.054 0.64 0.51 0.78

Table 5
Cluster Population and Entropy Statistics for the 20×20 Toroidal SOM

UMAT with K=8 Clusters

K-means Cluster Population Minimum Maximum Mean
Cluster Over Map Entropy Entropy Entropy

0 0.125 0.03 0.84 0.26
1 0.210 0.00 1.00 0.42
2 0.042 0.15 0.74 0.62
3 0.330 0.00 0.31 0.23
4 0.055 0.09 0.82 0.48
5 0.055 0.39 0.69 0.58
6 0.050 0.36 0.98 0.62
7 0.132 0.02 0.78 0.35
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In both decoded neuron weight maps, we observe a number of
neurons that appear as a rotated average of a central source
radio image and extended emission. These morphologies are
clear in Figure 6, in neurons of the region 5–3, 6–9, and
Figure 7, in a similar region with neurons of the region
7–4, 8–10.

The low-distance regions of the UMATs contain prototypes
and decoded neuron weights as compact single sources.
Morphologies in this central compact region gradually progress
in complexity to compact multi-point sources, sources with
globular morphologies, and bent-tail sources toward higher-
distance regions. Images placed in high-distance regions have a
latent feature vector with a high UMAT distance value to
surrounding neighbors, which highlight outliers within the
RGZ image set. These results are also illustrated in Figure 10,
which show the distribution of UMAT distance values of
neurons across the map. This figure shows a clear separation of
simple, complex, and anomalous classed sources, in addition to
RGZ label 11, 12, 22, and 33, based on the UMAT distance
value.

The differences between the results obtained when trained on
the rotated augmentation latent vectors and with normal latent

vectors are minor, with the random rotations producing slightly
more defined peaks in the UMAT distance value distributions
in Figure 10. However, it appears that the SOM trained on
latent vectors produced by an autoencoder with random
rotation contains less prominent average rotation weights. This
improvement is likely due to the autoencoder encoding rotation
information in the latent vector, which has allowed the SOM to
separate these rotations and clean these average rotated
weights. Although rotation is not a meaningful radio-
astronomical feature, these changes produce an easier to
interpret map for both the decoded weight map and the map
displaying the closest matching RGZ neuron images. The map
trained using latent vectors produced from random rotations in
the autoencoder was used for all subsequent tests due to these
improvements.
The increased rotational dependency observed in these tests

raise questions regarding the true nature of rotational invariance
in a SOM. For a neuron to be rotationally invariant,
morphological features must be the only feature that is
clustered by the system. For this to be the case, genuine
rotational invariance would result in all neurons on the SOM
being mapped with the same position angle, or for each neuron

Figure 11. 20×20 toroidal SOM, displaying an overlay of decoded neuron weights with four color-coded K-means clusters.
(A color version of this figure is available in the online journal.)
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to contain all possible position angles, as the observed rotated
average morphology seen in decoded neuron images. These
concepts suggest that greater rotational invariance may be
found on maps with more of the observed averaged rotation
neurons.

5.3. K-means Clustering and Verification with RGZ
Labels

Test results for the map segmentation using K-means
clustering are shown for each SOM using an image of the
SOM grid with decoded neuron weights and map displaying
the closest matching RGZ image, with a K-means color coding
on each neuron for the assigned K-means cluster Identification
Number (ID) number. All K-means cluster ID numbers are
arbitrary as they are assigned in an unsupervised manner. All
associated ID colors are assigned as discrete color intervals to
visually differentiate individual clusters IDs. Two tables are
included for each test. The Tables 3 and 6 describe the division
of the map assigned to each cluster and associated entropy
statistics. Tables 4 and 6 describe for every cluster, the division
of neurons with the label of the closest matching RGZ image to

each neuron, the total division of the RGZ images with that
label in the cluster and the associated entropy statistics.
These results demonstrate that the K-means clustering is

separating SOM neurons closely related to morphology and to a
lesser extent, the rotation angle of the source features. Clusters
also appear to segment morphologies by their relative complex-
ity. There are definitive simple, complex, and intermediate groups
divided by the clustering, with clear groups of relatively simple
clusters which are comprised of mostly point sources (RGZ
label 11), compact multi-peak single-component sources (RGZ
label 12), complex sources with highly separated sources or
sparse sources with distant companions. Regarding general
clustering quality, all tests show reasonable connectedness with
few neuron clusters inter-mixing. The total clustering time for this
SOM is negligible at 0.160 and 0.176 seconds for K=4 and
K=8 clusterings respectively
In the K=4 clusters, the UMAT in Figures 11 and 12,

appears to be segmented into four groups with varying
complexity. As summarized in Table 6, in the most simple
group, cluster ID 1, a 0.88 division of the cluster contains RGZ
labeled point sources, which contains a division of 0.73 of all
RGZ point sources in the data set. Similar clustering is seen in

Figure 12. 20×20 toroidal SOM, displaying the closest matching RGZ images with four color-coded K-means clusters.
(A color version of this figure is available in the online journal.)
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the more complex cluster 0, where a vast majority of the cluster
contains radio-doubles and a majority of the radio-doubles in
the data set reside. The remaining clusters 2 and 3, appear to
segment largely medium complexity sources such as RGZ
labeled 12 and a mix of 11 and 22 labels.

We observe more meaningful clusters with the K=8
clustering tests shown in Figures 13 and 14. These clusters
segment the map into similar groups to the K=4 clusters, but
with clusters containing higher population divisions, as shown
in Table 5, where many groups are dominated by divisions in
some cases of between 0.600 and 0.977 of the same RGZ
labeled source. This can be seen with complex clusters such as
2 and 4 containing mostly RGZ labeled 22 sources. Similarly,
simple clusters such as cluster 3, are almost entirely comprised
of RGZ label 11 point sources and contain most of the point
sources from the data set. Similar to the K=4 cluster tests,
there are a number of intermediate clusters such as cluster 5 and
6, with medium complexity that contain a vast majority RGZ
label 12 sources.

In the K=4 and K=8 clustering tests, neither tables are
listing more complex labels such as 33, as these form a minute
population of the data set, but are visible by their morphology in
the learned UMAT, as contained in the identified highly complex

clusters. Most notable are clusters 0 and 3 from the K=4 cluster
test, and clusters 1 and 2 in the K=8 cluster tests, which contain
highly complex and interesting sources showing a wide range of
extended features. Although the K=8 cluster test contains more
meaningful clusters, it appears a balance must be reached with the
number of clusters and neurons available in the map. Using too
many clusters may cause groupings to split logical classes to
satisfy the K cluster value, or too few clusters which may result in
true divisions and relationships on the map being under-
represented or not revealed.
It is evident through these observations and the population

division tables, that the K-means algorithm is segmenting
morphologies and associating relationships not entirely corre-
lated to the RGZ labels despite the clustered maps showing
reasonably clear and logically assigned clusters based on
morphology and complexity. These results indicate that the
relationships learned by the system may be more complex than
peak and component counts and therefore under-represent
them. This detection of labels different from those of the
training set is wholly expected since the system is trained in an
unsupervised manner.
Across all tests, there are several evident entropy and map

population effects. Most notably, mean cluster entropy values

Table 6
Divisions of Clusters Based on the Label of the Closest Matching RGZ Image, Matching Clustered Label Divisions and Entropy Statistics for Each of the K=8

Clusters in the 20×20 Toroidal SOM UMAT

Cluster RGZ Division of Division of Mean Minimum Maximum
ID Label Matching Label All Image Entropy Entropy Entropy

In Cluster Labels In
Cluster

0 12 0.545 0.140 0.59 0.39 0.69
22 0.409 0.097 0.58 0.48 0.67
11 0.045 0.005 0.39 0.39 0.39

1 22 0.548 0.495 0.61 0.12 1.00
11 0.452 0.172 0.20 0.00 0.51

2 22 0.900 0.194 0.62 0.36 0.98
11 0.050 0.005 0.48 0.48 0.48
12 0.050 0.012 0.75 0.75 0.75

3 11 0.977 0.584 0.22 0.00 0.30
12 0.023 0.035 0.29 0.28 0.31

4 22 0.824 0.151 0.67 0.55 0.74
11 0.176 0.014 0.37 0.15 0.52

5 12 0.660 0.407 0.45 0.15 0.75
11 0.302 0.072 0.11 0.02 0.17
22 0.038 0.022 0.56 0.34 0.78

6 12 0.682 0.174 0.53 0.18 0.82
22 0.182 0.043 0.61 0.49 0.78
11 0.136 0.014 0.11 0.09 0.12

7 11 0.600 0.136 0.14 0.03 0.26
12 0.400 0.233 0.43 0.25 0.84
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increase with the presence of more complex and anomalous
sources. As expected, point sources have the lowest mean
entropy due to their simplicity and the greatest neuron
population across the map due to the point source bias in the
RGZ data set. Higher complexity sources, represent a smaller
part of the training set and appear to have consistently smaller
cluster populations, but significantly greater mean entropy due
to their complexity. These population and entropy statistics
effectively reveal not only the types and complexity of
morphologies in the data set but also effectively describe the
original label distributions and biases.

The difficulty when trying to use clusters as classifications
on a continuous manifold can be seen by both the label
crossovers found between many K-means classes and the point
made by Kohonen (1997); SOMs are not explicitly designed
for hard classification. The original principles of SOM learning
will not produce highly distinct clusters, but will instead
produce these results: a semantic map of outliers, regions, and
morphologies rather than highly distinct groups. These
qualities are largely seen with the blurring of features in
neuron weights due to the relatively small 20×20 map size

compressing the true feature space. It is possible that in
exceptionally large SOM these relationships may have enough
space to become sufficiently separated for discrete classifica-
tion. Reduction of blurring effects in small crowded SOMs
such as ours and the highlighting of outliers have also been
successfully shown in Tasdemir & Merényi (2009), by instead
implementing a new connectivity measure for the similarity of
SOM prototypes that produces a more effective detection of
manifold structures.
The total training time of this system is competitive with

other methods from the literature such as Polsterer et al. (2016).
Our approach produces similar SOM morphologies with square
neurons and significantly reduced processing time as python
code using a 24 core CPU requiring 14.55 minutes for the full
autoencoder training of 10,000 images, encoding of 10,000
images, SOM training of 30,000 images, validation of an
additional 30,000 images and final clustering, compared to 17
days with 200,000 images using python code on a 8 core CPU.
The difference in data volume is the likely cause, where even
with random rotation autoencoder training, our SOM training
latent vectors contain only 900 elements per image, opposed to

Figure 13. 20×20 toroidal SOM, displaying an overlay of decoded neuron weights with eight color-coded K-means clusters.
(A color version of this figure is available in the online journal.)

15

Publications of the Astronomical Society of the Pacific, 131:108011 (17pp), 2019 October Ralph et al.



a total of 1,331,280 elements per image including rotations
used in Polsterer et al. (2016).

6. Future Work

Our plans are to improve each of the three distinct
components, the autoencoder, self-organizing map and cluster-
ing algorithms. By varying the latent vector sizes and structure
of the autoencoder we will achieve a better balance between
training time and accuracy. Additionally, we will be using a
stacked architecture to train latent vectors for multi-channel
data. The SOM will be further improved with heat map display
of entropy in addition to gathering more performance metrics
such as precision and reliability. We will also investigate other
clustering algorithms trained in different learning spaces and
projections. Additional variables such as map size can be
eliminated and more dynamic relationships examined using a
growing SOM (Rauber et al. 2002).  We aim to further
investigate affine invariance in SOM by training on images
aligned to a common major axis and with all central
components scaled to the same size. As previously discussed,
the SOM output appears is continuous. Consequently, the

challenge of more definitive and in-depth source classification
can be viewed as a regression problem. We aim to continue
working in this direction to create a machine-learning
regression framework auxiliary to the SOM to regress the
continuous SOM morphologies into discrete classes. Addition-
ally, future investigations will also focus on determining the
scalability of this method when applied to significantly
increased data volume and more numerous classes.

7. Conclusion

We conclude that the coupling of self-organizing maps with
convolutional autoencoders is an effective method of data
exploration and unsupervised clustering of radio-astronomical
images. Our approach directly addresses the growing survey
processing time and provides a better means to explore large
data sets automatically with a total processing time less than 15
minutes for 80,000 images. Our results demonstrate an accurate
visualization of morphology distributions found within the
RGZ data set. Our results show the capabilities of this method
in locating outliers as high UMAT distance values and in
K-means clustering with a distinct class of highly complex

Figure 14. 20×20 toroidal SOM, displaying the closest matching RGZ images with eight color-coded K-means clusters.
(A color version of this figure is available in the online journal.)
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sources with low data set population. By combining clustering
with citizen science projects such as Radio Galaxy Zoo, greater
efficiency can be achieved with volunteers inspecting only a
small sample of objects from each cluster or being guided by
likely morphologies in each cluster. The speed of this method
holds implications for use on large future surveys, large-scale
instruments such as the Square Kilometre Array (SKA;
Johnston et al. 2007) and in other big data applications.

The authors acknowledge the Radio Galaxy Zoo Project
builders and volunteers listed in full athttp://rgzauthors.
galaxyzoo.org for their contribution to RGZ data set and labels
used in this paper. We also acknowledge the National Radio
Astronomy Observatory (NRAO) and the Karl G. Jansky Very
Large Array (VLA) as the source of this radio data. Partial support
for L.R is provided by the U.S National Science Foundation grant
AST17-14205 to the University of Minnesota. H.A benefited from
grant DAIP #066/2018 of Universidad de Guanajuato.
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