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Abstract. Labelling unlabeled data is a time-consuming and expen-
sive process. Labelling initiatives should select samples that are likely to
enhance the classification accuracy of the classifier. Several methods can
be employed to accomplish this goal. One of these techniques is to select
samples with the highest level of uncertainty in their predicted labels.
Experts then label these samples. Another option is to choose samples
at random. This paper proposes three methods for identifying unlabeled
samples to improve predictive accuracy when they are labelled. Our study
explores how to select samples when we have very few labelled samples
available from manifold distributed data sets. In order to assess perfor-
mance, we have compared our approaches with uncertainty sampling and
random sampling. We demonstrate that our methods outperform uncer-
tainty sampling and random sampling by using public and real-world data
sets.

Keywords: Active learning · Uncertainty sampling · Unlabelled
sampling · Random sampling · Incremental learning · Few shot
learning · Entropy · Uncertain labels

1 Introduction

To classify complex tasks, supervised machine learning models can be used to
learn complex relationships between queries and responses. For instance, machine
learning models can help detect tumours at an early stage. Upon finding a
tumour by these models, a specialist can examine it further. Training data must
contain queries and responses created by or evaluated by specialists to train mod-
els for specialized purposes. Therefore, such data can be challenging to obtain.
Many queries are available (e.g. image scans, feature vectors, videos), yet, it is
hard to receive accurate responses to each of these queries. In the case of spe-
cialized data, we must hire a specialist to examine each query and provide a
response. A specialist must take time to do this, which is costly for both the
data modeller and the specialist. If labelling is cost-prohibitive, a smaller sam-
ple of queries is forwarded to a specialist. The selection of the samples is either
accomplished randomly or using uncertainty sampling.
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Table 1. Sampling/Labelling scenarios. With a large sample that is difficult to label,
we resort to labelling a random sample, but is that best approach?

Sampling
1: Simple 2: Difficult

Labelling
A: Simple Label all Label all
B: Difficult Label Random Label all

This paper discusses how to sample queries for manual labelling to improve
the accuracy of the machine learning models. In our research, we generally focus
on small sample sizes (e.g., the few shot learning scenario and manifold dis-
tributed data). The article will proceed as follows: Sect. 2 discusses the current
state of the art in the selection of the next best-unlabelled sample. Section 3
examines our approaches to the next best sample selection. Section 4 presents
the results of experiments conducted on different public and real-life data sets
in a few-shot learning and semi-supervised learning scenario. This section also
compares our sampling techniques with active learning’s uncertainty sampling
and random sampling. Section 4.3 contains a list of our observations. Section 5
concludes this paper and discusses our future work.

2 Background and Related Work

In attempting to classify manifold distributed data with very few label samples,
we investigated the problem of finding the best-unlabelled sample for labelling.
In classifier training, there are four scenarios regarding data availability. Table 1
lists all these scenarios. This article discusses scenario 1B (easy to sample and
difficult to label). In this scenario, we have to label more samples to achieve
higher accuracy in classification. Labelling is a complex and costly endeavour, so
choosing the right unlabelled sample is crucial. Imagine, for example, one million
CT scans with only ten labels. To improve the accuracy of your classifier, you
need to label another ten items. Choosing a sample that increases the accuracy
of the classifier is crucial in such a scenario. This is the focus of our sample
selection methods.

Active learning is the process of selecting an optimal unlabelled sample from
a pool of unlabelled data. Unlabeled data is classified with a classifier, and then
the observations with the most uncertain labels are identified. This process is
known as uncertainty sampling. There are many methods that are available to
estimate the uncertainty of a labelled sample. The active learning process con-
sists of querying an information source, for example, an Oracle, to assign a new
label to a data point. This algorithm attempts to choose the best possible sam-
ple to be labelled [16,18]. The term optimal experimental design can also refer
to active learning in statistics. In situations, unlabeled data is readily available,
but its labelling is costly. When such a scenario occurs, a learning algorithm can
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aid in identifying samples for labeling. This process is known as active learning.
Choosing examples that the learner finds meaningful is generally more effective,
which results in fewer examples needed than is necessary for supervised learn-
ing. Recent advances in active learning include multi-label active learning [24]
and hybrid active learning [11]. These research areas combine machine learning
concepts with incremental learning policies. There are three different scenarios
or settings in which learners typically query instances’ labels.

– The learner generates instances based on the underlying distribution in the
membership query synthesis.

– In stream-based sampling, the assumption is that unlabeled samples are free
to obtain. Thus, each unlabelled sample is selected one at a time. Upon read-
ing an unlabelled instance, the learner can decide whether to query or reject.
Acceptance or rejection of the instance is driven by its informativeness. A
query strategy determines how informative the sample is.

– Pool-based sampling is based on the assumption that there is a large pool of
unlabeled data. An informativeness measure can be applied to all samples in
the pool to identify the best candidates for labeling. The proposed sampling
methods described in this paper can also be referred to as pool-based sampling
techniques.

The learner can utilize a variety of measures to identify the most appro-
priate sample. An example of one of these measures is uncertainty. The learner
labels all unlabeled data using the available labelled data. Upon determining the
uncertainty of each predicted label, the sample with the most uncertain label is
selected and sent to Oracle for labeling. The following are three commonly used
approaches to querying instances based on uncertainty sampling.

– Least Confidence: LC strategies let learners select the instance for which the
learner is least confident in its most likely label.

U(x) = 1 − P (x̂|x) (1)

– Margin Sampling: A fundamental problem with the LC strategy is that it only
considers the most probable label and disregards the other label probabilities.
For this reason, the margin sampling strategy selects the instance with the
minimal difference between the first and second most probable labels.

M(x) = P (x̂1|x) − P (x̂2|x) (2)

– Highest Entropy: All the potential label probabilities can be computed using
entropy. All instances are analyzed by calculating the entropy value of each
instance and querying the instance with the highest value.

H(x) = −
∑

k

pk log(pk) (3)
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It is important to note that uncertainty sampling is dependent on predicted
labels. In addition, calculating uncertainty is not straightforward for all classifi-
cation methods. It is not easy, for example, to calculate the uncertainty in neural
network setup [23].

Sampling plays a significant role in classifier training. In order to improve
prediction accuracy, it is necessary to train a classifier with sufficient training
data. Sample collection can help provide the necessary data. You can find a
detailed description of most of the sampling techniques in Altmann et al. [1] and
Etikan et al. [5]. In random sampling [15], each sample has an equal chance of
being selected. A stratified random sampling method [14] involves dividing the
population into subgroups called strata and selecting samples at random from
each stratum. A systematic sample selection method, [12] is based on choosing
a fixed interval and starting point. After establishing a starting point, subse-
quently, samples can be collected at regular intervals. Clustered sampling [6]
allows drawing samples at random from some of the clusters. Clustered sampling
draws samples from random groups, whereas stratified sampling selects samples
from each stratum or group, allowing us to exclude entire groups from the study.
The convenience sampling method [17] involves selecting a sample solely on the
basis of its convenience for sampling purposes. Quota sampling [13] selects sam-
ples based on specific characteristics. There is also snowball sampling [8], which
selects a sample based on the judgment of the experts who need it, and then uses
it to select subsequent samples. Sampling methods are bound to be biased. A
number of methods have been proposed to address bias in sampling [10,21]. All
samples need not come from the same distribution. They may even come from a
distribution similar to the one we study. If the main distribution is unavailable,
importance sampling [22] is applied. In this scenario, we sample from another
distribution by adjusting the weights of the distribution so that it represents
the desired distribution. We can use information gain to select the samples. The
information gain is the amount of entropy removed from the data set by splitting
it. Therefore, a split with a higher information gain [2] is preferred.

Data samples are collected before classification models are built and trained.
It is possible to construct classification models if enough data is available. When
we do not have enough data, we can continually improve our classification mod-
els by retraining additional labelled data. During retraining, newly acquired
labelled data is incorporated into the learning process. The method of learning
is called incremental learning [7]. It is possible to apply several traditional clas-
sification methods to incremental learning [20]. In incremental learning, the goal
is to acquire new knowledge based on new data without forgetting the existing
knowledge derived from older data. The next best action recommendation is a
popular marketing technique designed to retain customers. In order to determine
what the best next step for a given customer is, it is necessary to compare their
profile to a similar customer model [9]. Reinforcement learning determines the
next best task based on this approach [4]. In a similar fashion to incremental
learning, the next best task has been an active area of research [3].
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Aside from uncertainty sampling, our work is also comparable to Transduc-
tive Semi-supervised Deep Learning (TSSDL) and Personalized next-best-action
recommendation [3,19]. In particular, we discuss the topics of sampling, entropy,
incremental learning, and recommendation of the next best task. We will discuss
the relevance of these topics after providing a brief overview of these topics. We
do not estimate labels for the unlabeled samples, but rather rank all unlabeled
samples according to their potential influence on classification accuracy.

3 Measuring the Utility of an Instance for Training

As a rule of thumb, the performance of a classification model is contingent on
how well the training data represent the population to be classified. Therefore,
it is imperative to select a sufficient number of instances from the population of
interest for manual labelling and inclusion in the training set. To accomplish this,
we must be able to select the most appropriate sample of the population, and
then manually label each instance within that sample. We should take as large a
sample as possible if the labelling of each instance is a straightforward process.
Furthermore, we should attempt to label all the observations in our training set.
When both manual labelling and sampling are time-consuming and costly, fewer
samples can be collected, and all instances will have to be labelled. There is a
question regarding how to proceed when we have access to a large pool of unla-
belled data but cannot label each instance. Therefore, we must determine which
subset of that sample should be manually labelled and added to the training set.
Our goal should be to select observations that will produce the highest increase
in classification accuracy when used for training. However, the question remains
as to how to choose the instances.

This section examines three candidate functions for evaluating the utility of
including an unlabeled instance in a training set. Each instance is assigned a score
based on its potential to influence classification accuracy. The article focuses
on data with a relatively small training set (only a few cases were manually
labelled), and which are manifold distributed. Thus, we use k Nearest Neighbors
(kNN) as a classifier. Please also note that we have assumed that sampling from
the population will be relatively straightforward, whereas labelling will be more
complex. Thus, we can also safely presume that we have a large pool of candidate
instances from which to choose and that it is possible to assess the utility of a
selected instance; we refer to this pool of available data as the “test set”. We
have described our proposed methods in the following three subsections.

3.1 Neighbourhood Impact

In order for a new instance to have the potential to increase accuracy, it has to
play a role in the classification of newly created instances. The training instance
is only relevant if it is the nearest neighbour of the test instance in the kNN clas-
sification. Therefore, one measure of the utility of a candidate training instance
is the number of data points it is closest to.
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Given a set of manually labelled instances X and a set of unlabelled instances
U , let Nk(u;X ) ⊂ X be the set of k nearest neighbours of u chosen from the
manually labelled set of instances, where u ∈ U and |X | > k. We define the
Neighbourhood Impact I of labelled instance x as

I(x) =
∑

u∈U
1Nk(u;X )(x). (4)

for x ∈ X , where 1A(x) is the indicator function (1A(x) = 1 if x ∈ A or 0
otherwise).

To measure the neighbourhood impact of an unlabelled instance u, we must
remove the instance from the set U to obtain U \ u, and append it to the set of
labelled instances {X , u}. The neighbourhood impact for an unlabelled instance
is

I(u) =
∑

v∈U\u
1Nk(v;{X ,u})(u). (5)

Including an unlabelled instance in the training set will not cause the trained
model’s classification accuracy to improve if I(u) = 0. Including an unlabelled
instance with a high I(u) will affect the model’s classification accuracy when
included in the training set. The hypothesis is that if an unlabelled instance has
a high I(u) value, then manually labelling it and adding it to the training set
will improve its accuracy.

3.2 Maximum Entropy

A neighbourhood impact refers to the potential of an instance based on its
proximity to a neighbourhood. Furthermore, it is possible to examine whether
the point may be able to alter the unlabelled class prediction. By calculating the
entropy of the label distribution one can determine how robust the prediction
is when there is a set of training labels. As a result, the notion of high entropy
implies that one change in an instance label might alter a prediction, whereas
the notion of low entropy requires many changes in order to change a prediction.

The class prediction for test instance u is the mode class of the set of k nearest
neighbours from the labelled set X . We define Lk(u;X ) as the set of class labels
associated to the training instances Nk(u;X ). Using this, the predicted class
label for instance u is mode (Lk(u;X )) and the entropy of the neighbourhood
distribution is Ent (Lk(u;X )).

This potential for an unlabelled instance u to influence the class prediction is
expressed by Maximum Entropy. Essentially, this can be defined as the maximum
class distribution entropy if the example was included in the training set with
a class label. The maximum entropy H(u) of an unlabelled instance u can be
defined as

H(u) = max
lu∈L

∑

v∈U\u
Ent (Lk(v; {X , u})). (6)
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where u is the candidate unlabelled instance, U \ u is the unlabelled set with
the candidate instance removed, lu is the label of the candidate instance, L is
the set of all possible class labels and Ent(X) is the entropy of the categorical
distribution X.

3.3 Delta in Prediction

It would be ideal if we could identify which of the unlabelled instances would
be suitable for labelling and inclusion in the training set. The ideal training
example is the one that offers the highest accuracy. Due to the lack of labelling,
we cannot examine the increase in accuracy for each candidate instance.

Instead of measuring the increase in accuracy, we can instead measure the
potential increase in accuracy. The classification accuracy for kNN using training
set X and testing set U is

1
|U|

∑

u∈U
1 (mode (Lk(u;X )) = lu). (7)

where 1(A) is an indicator function (providing 1 if A is true and 0 is A is false)
and lu is the class label of instance u.

We define the Delta in Prediction of labelled instance x as

Δ(u) = max
lu∈L

1
|U \ u|

∑

v∈U\u
1 (mode (Lk(v; {X , u})) = lv). (8)

where u is the candidate unlabelled instance, U \ u is the unlabelled set with
the candidate instance removed, lu is the label of the candidate instance, and
L is the set of all possible class labels. Thus, the Δ(u) represents the maximum
classification accuracy that may be obtained by including u in the training set,
concerning all class labels.

In this paper, we examine the relationship between each of these functions’
scores and the accuracy of classification when choosing the associated instance.

4 Experimental Setup

We have only a small training set and wish to add to it. But manual labelling
is challenging, so we should choose carefully when selecting which unlabeled
instances are to be labelled. This study aims to answer the question: “Does the
use of instance selection functions to refine sample selection result in better accu-
racy than random and uncertainty based selection?”. We empirically investigate
this question using the data from the UCI repository.

In each run of the experiment, we follow the steps below. A random sample of
instances from a given data set is chosen as the training set containing manually
assigned labels. The remainder of the instances are left unlabeled. Every unla-
belled observation is assigned a selection score, and the sample with the highest
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Table 2. Data used for evaluating instance selection functions.

Dataset No of classes Characteristics Instances Attributes Features

Banknotes 2 Multivariate 13,72 Real 5
Satlog 6 Multivariate 6,435 Integer 36
Segmentation 7 Multivariate 2,310 Real 19
Heart disease 5 Multivariate 303 Real 14
Diabetes 2 Multivariate, Time-series 768 Real 9
Pendigits 10 Multivariate 10,992 Integer 16

Table 3. Comparison of average classification accuracy of random and uncertainty
sampling with all our methods - average of 100 iterations

Dataset Rand
samp

Uncert
samp

I Δ H IΔ IH ΔH IΔH

Banknotes 0.59 0.60 0.61‡ 0.56 0.58 0.56 0.61‡ 0.60† 0.61‡

Satlog 0.45 0.45 0.46‡ 0.46‡ 0.46† 0.46† 0.46‡ 0.46‡ 0.46‡

Segmentation 0.35 0.36 0.36† 0.35� 0.36† 0.35 0.36‡ 0.35∗ 0.36‡

Heart disease 0.46 0.45 0.44 0.48‡ 0.45 0.48‡ 0.44 0.45 0.48‡

Diabetes 0.60 0.61 0.63‡ 0.63‡ 0.64‡ 0.63‡ 0.63‡ 0.63‡ 0.63‡

Pendigits 0.38 0.37 0.39† 0.38 0.38 0.37 0.39† 0.38 0.39†

Signif. codes: �: p < 0.05, †: p < 0.01, ‡: p < 0.001.

score is added to the labelled training set. kNN accuracy is determined before
and after the new point has been added to the training set.

The experiment variables are: the candidate instance selection functions
{Random selection, Neighbourhood Impact, Maximum Entropy, Delta in Pre-
diction}, the data (shown in Table 2), the initial training set size {4, 8, 16, 32,
64, 128}, and the number of instances chosen. Initial analysis shown in Fig. 1
showed that high accuracy instances are those that provide more central scores,
so we selected the instance that provided the score closest to the mean score
from all observations, to include in our training set. We also expanded the can-
didate instance selection function set to include the sum of each combination
of the three candidate function scores. The selection methods are shown in the
results as: Random sampling(adding a randomly chosen instance), uncertainty
sampling, Δ (Delta in prediction), H (Maximum entropy), and I (Neighbour-
hood impact). Whenever two or more methods have been combined, the scores
for the respective methods have been added.

4.1 Choosing One Instance

In the first experiment, we examine the results of selecting one instance from the
unlabeled set to be manually labelled using a randomly chosen training set size
of four. The experiment is paired, i.e. each method employs the same random
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Fig. 1. Relationship of higher accuracy, neighbourhood impact and delta in prediction
- Banknotes dataset. The figure shows that high accuracy is related to mean neigh-
bourhood impact and delta in prediction

training sets. Figure 2 provides the accuracy of each method based on 100 runs,
where the results are sorted by uncertainty sampling. Each point on the figure
represents the average prediction accuracy after one hundred iterations. The
graph has exactly 100 points, so each line represents ten thousand executions.
The proposed selection technique performs much better than the benchmarks,
namely uncertainty sampling and random selection. In light of our experimental
findings, and the above demonstrations, we find that our proposed techniques
perform very well in a few-shot learning environment. The p values of all tech-
niques are compared in Table 3. This table also presents the average accuracy of
each technique for different data sets in comparison with random sampling and
uncertainty sampling.

4.2 Choosing n Instances

As the number of labelled samples increases, i.e. as we move from a few shot
learning scenario to a semi-supervised learning scenario, Fig. 3 illustrates the
average accuracy for Random, Oracle, uncertainty sampling and our methods.
For all methods, accuracy is based on sample sizes of 4, 8, 16, 32, 64, 128. The
figure illustrates that our approaches are more accurate than random selection
when the labelled sample size is small while at par with random selection as the
labelled sample size increases. Our study found that as the number of labelled
samples per class exceeds 32, the accuracy of selecting new unlabelled samples
remains the same for all methods, including random sampling. Depending on the
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Fig. 2. Mean accuracy of classification – next best 1 sample selection – each point
represent 100 executions

data set, this saturation point may vary, but it is typically close to 30 samples
per class.

These techniques have been tested in a number of situations, including the
next-best 1, n unlabelled samples and n labelled samples. Our results demon-
strate that these techniques are on par with random selection in the next-best
1 and n unlabelled sample selection setting. Please refer to Fig. 4 that shows
the results of a banknotes data set using the next-best 3, 5, 7, and 9 unlabelled
samples. Next-best 3 unlabelled sample setting is one where three 3 unlabelled
samples are selected to compare their accuracy.

4.3 Semi-supervised Learning Scenario

In a setting with many labelled samples, we observed similar results. This test
aimed to assess performance in a semi-supervised setting. In Fig. 3, we compare
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Fig. 3. Comparing the average accuracy (average of 100) for Oracle, Random, and our
methods as the number of labelled samples increases

uncertainty sampling, random selection, and all of the techniques we propose
using all of the data sets. A comparison is made between the average accuracy as
we move from a small labelled data set (few-shot learning) to a bigger labelled
data set (semi-supervised learning). The number of available samples doubles
with each stage. This analysis shows that our approach performs better with
4,8,16, and 32 observations. Although our method outperforms when only a few
labelled samples are available, it is still competitive when many labelled samples
are available. Table 3, we present the results of ten thousand computations and
compare uncertainty sampling and random with the proposed methods.

Based on our experiments conducted in few shot and semi-supervised set-
tings, the following results were observed.

1. A systematic selection of an unlabeled sample is preferable when small labeled
samples are available for the training of the classifier.

2. The methodologies we propose for systematic selection can also be applied
in a semi-supervised setting where a large number of labels are available.
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Fig. 4. Comparison of various methods for next best 3, 5, 7 and 9 sample selection –
Banknotes data set

The cost of systematic selection in this case is higher than that of random
selection.

3. There is a saturation point in terms of the number of samples that have
been labeled. There are no differences between uncertainty sampling, random
sampling and systematic selection beyond this point.

5 Conclusions

We present three novel approaches to selecting a good next sample in few-
shot and semi-supervised learning situations. We evaluate our proposed methods
using random sampling and uncertainty sampling as benchmarks. Performance
is evaluated by comparing the accuracy of classification before and after includ-
ing the selected samples in the training set. Our evaluation of real-life, publicly
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available data sets shows that our proposed sampling methods are preferable
to uncertain sampling and random sampling when there are only a few labelled
samples available. Furthermore, our method performs as well as the benchmarks
when there are a lot of labelled samples.
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