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Abstract. Multi-label classifiers allow us to predict the state of a set of
responses using a single model. A multi-label model is able to make use
of the correlation between the labels to potentially increase the accuracy
of its prediction. Critical applications of multi-label classifiers (such as
medical diagnoses) require that the system’s confidence in prediction also
be provided with the multi-label prediction. The specialist then uses the
measure of confidence to assess whether to accept the system’s predic-
tion. Probabilistic multi-label classification provides a categorical distri-
bution over the set of responses, allowing us to observe the distribution,
select the most probable response, and obtain an indication of confidence
by the shape of the distribution. In this article, we examine if normalised
entropy, a parameter of the probabilistic multi-label response distribu-
tion, correlates with the accuracy of the prediction and therefore can be
used to gauge confidence in the system’s prediction. We found that for
all three methods examined on each data set, the accuracy increases for
the majority of the observations where the normalised entropy thresh-
old decreases, showing that we can use normalised entropy to gauge a
systems confidence, and hence use it as a measure of acceptance.

1 Introduction

Multi-label learning is the process of learning the association of L binary labels
y of the response space, to a given point in a explanatory space x. A multi-label
classifier may have a high dimensional explanatory space RM , and a high dimen-
sional response space BL (where B is {0, 1}), depending on the data. Therefore
there may be many suitable responses for a given x, but only the most likely is
provided as the predicted response. A review of multi-label learning is found in
[5].

Critical applications of multi-label learning, such as medical diagnoses, mil-
itary support or political decisions, require that multi-label predictions are ac-
curate. Therefore it is essential that all predictions are paired with a measure
of the multi-label system’s confidence in its prediction. If the confidence is high,
the specialist can accept the systems prediction. If the confidence is low, the
specialist will not accept the prediction, but may also examine the cause of the
low confidence.



Probabilistic multi-label learning is the process of assigning a categorical
distribution over the BL space for a given x. Each of the 2L elements y in
the space BL are assigned a probability. By examining the distribution, we can
determine the most likely response to the input x, and also examine if other
response label sets have high probability, giving us confidence in the response
and an indication of the relationship between the labels.

When many labels exist, it is difficult to examine and compare the distribu-
tion over the 2L label combinations. It is also not always simple to determine a
system’s confidence by observing the response distribution. Therefore it would
be useful to summarise the distribution with a parameter that can be used to
measure a system’s confidence of its prediction.

In this article, we examine if the accuracy of a probabilistic multi-label sys-
tem’s response is correlated to a parameter of the response distribution. We
hypothesise that the normalised entropy of the response distribution will pro-
vide us with a measure of confidence. The contributions of this article are:

– a discussion on the use of normalised entropy of the response distribution to
assess prediction accuracy (Section 3),

– an analysis of the relationship between accuracy and normalised entropy for
probabilistic multi-label classification (Section 4), and

– a probabilistic version of the label powerset multi-label classifier (Section
2.3)

The article will proceed as follows: In section 2 we examine the concept of prob-
abilistic multi-label learning and examine three models for computing the joint
distribution over the powerset of labels. Section 3 discusses the use of the re-
sponse distribution to assess the accuracy of the predicted response label set.
Finally, section 4 empirically examines the relationship between normalised en-
tropy and accuracy of a response.

2 Probabilistic Multi-label Learning

For a given input space RM and a set of L labels li, a probabilistic multi-label
classifier learns the probability distribution over the powerset of labels BL. A
probabilistic multi-label classifier maps an input vector x ∈ RM to a categorical

probability distribution θ ∈ S2L , where S2L is the 2L dimensional simplex. Using
the categorical distribution, we can identify the probability of each label set
being the correct response to x

θi = P (yi|x) (1)

where x is the input vector to be classified, yi is the ith element in the powerset
of labels BL, and θi is the probability that yi is the correct label set of x. For
example, given the three labels, l1, l2 and l3 and an input vector x, a probabilistic
multi-label classifier will provide a distribution over the eight elements of the

powerset shown in Table 1, where
∑2L

i=1 θi = 1.



Table 1. The powerset elements yi of the labels l1, l2 and l3, and the associated
probability θi of each label set computed by the probabilistic multi-label learner.

yi {} {l1} {l2} {l3} {l1, l2} {l1, l3} {l2, l3} {l1, l2, l3}
P (yi|xj) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

Constructing a probabilistic multi-label classifier is equivalent to modelling
the joint distribution of labels, conditioned on the input x:

P (l1, l2, . . . , lL|x) = P (yi|x) (2)

We will now examine probabilistic forms of three common multi-label classifiers.

2.1 Probabilistic Binary Relevance

The simplest form of probabilistic multi-label classifier, called Probabilistic Bi-
nary Relevance (PBR), treats each of the labels as independent of each other,
giving us:

P (l1, l2, . . . , lL|x) =

L∏
i=1

P (li|x) (3)

The task is then simplified to learning the probabilities P (li|x) for each label i.
This independence assumption ignores any correlation between labels and so is
equivalent to constructing L independent probabilistic binary classifiers.

2.2 Ensemble of Probabilistic Classifier Chains

Rather than assuming independence, the joint probability can be expressed in
terms of a product of conditional probabilities:

P (l1, l2, . . . , lL|x) = P (l1|x)

L∏
i=2

P (li|li−1, . . . , l1x) (4)

This form of joint probability decomposition is known as a probabilistic classifier
chain [2]. When learning the conditional probabilities from data, the joint proba-
bility becomes dependent on the label order. To remove this dependence, it was
suggested that an ensemble of probabilistic classifier chains (EPCC) be used,
where each of the classifier chains is constructed using a randomised ordering of
labels.

2.3 Probabilistic Label Powerset using Pairwise Coupling

The Label Powerset multi-label classifier has one binary classifier for each label
combination, meaning if there are L labels, then at most 2L binary classifiers are
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Fig. 1. A Label Powerset multi-label classifier using a set of probabilistic binary clas-
sifiers computes the Bernoulli distribution for each label. Pairwise coupling must be
used to obtain the categorical distribution over the label set.

required. If we replace the binary classifiers with probabilistic binary classifiers
(as done with the previous two methods), we would compute the probability
of the given response, independent of all other responses. This means that La-
bel Powerset using probabilistic binary classifiers will provide us with a set of
Bernoulli responses rather than a categorical distribution, and hence not provide
us with the joint probability. The Bernoulli responses show the probability that
the given label set is true and the probability that the given label set false, mean-
ing that the probability of the other label sets are not taken into account. To
obtain the joint probability over all label sets, we must compute the probability
of a given response, with respect to the probability of all other responses.

To compute the categorical distribution over the powerset of labels, we use
multi-class Pairwise Coupling [3] of the powerset of labels. Note that, we can
compute the multi-label joint distribution using any probabilistic multi-class
method over the 2L label combinations; we chose Pairwise Coupling because it
allows us to construct the probabilistic multi-label classifier using a collection of
probabilistic binary classifiers.

The Pairwise Coupling model requires that we train a binary classifier for
all pairs of label combinations. Each binary classifier allows us to fit a Bernoulli
random variable, therefore, for each probabilistic binary classifier, we obtain pi,j ,
the probability of state i being correct and p̄i,j = 1−pi,j , the probability of state
j being correct. The set of all pairwise probabilities are then coupled to obtain
the complete joint distribution using the following method.



Given each element of a categorical distribution θk with k ∈ {1, 2, . . . , 2L}
states, the probability of being in one state, relative to another is given by:

pi,j =
θi

θi + θj
(5)

This gives us at most
∑2L−1

i=1 i = 2L−1(2L−1) pairwise probabilities to compute
the 2L probabilities of the categorical distribution θ. We find the set of 2L

categorical probabilities θk as the categorical distribution that provides the best
fit of equation 5 for all k and j using the algorithm from [3]. If the training data
contains u unique label combinations, then the joint model will compute only
u(u − 1)/2 pairwise probabilities. Therefore the computation required for the
joint model is dependent on the number of unique label combinations available
at training time.

Note that each pairwise binary classifier is trained at training time, but the
categorical distribution is dependent on the given observations x, therefore the
coupling is performed during the prediction stage. The pairwise coupling method
requires a large number of binary classifiers to perform prediction, but we must
remember that each classifier is trained using a subset of the data (only those
objects that are associated to the selected pair of label sets for each pairwise
classifier), speeding up the training process.

3 Examining the Label Set Distribution

When performing binary classification, it is enough to present the results of the
classification as the probability of the class with greatest probability. Once this
probability is known, we are able to deduce the probability of the other class. If
the probability is close to 0.5, then the classification system has low confidence
in its decision. If the probability is close to 1.0, then the classification system
has high confidence in its decision.

Multi-label classification consists of many combinations of labels which are
all assigned a probability. By reporting only the probability of the label set of
greatest probability, we are providing little information to the user. A label set
with probability close to 1.0 implies that the system is confident in its prediction,
but unlike binary classification, a lower probability has little meaning unless we
have the rest of the distribution to compare it to.

The shape of the class distribution gives us a measure of confidence in the pre-
dicted results, which is very useful information to any practitioner. For example,
let’s consider a multi-label problem with only two labels, where the distribution
over the four combinations of labels is {0.31, 0.3, 0.29, 0.1} for a given value of x.
If our system predicted the most likely label combination, without providing us
with the class distribution, we would accept the result without second thought,
which is likely to lead to incorrect predictions. We can see from the distribution
that the second and third most probable label sets have similar probability to the
label set with the largest probability. This means that there is high uncertainty



in the class of x. The label set distribution provided by our system for each sam-
ple, allows us to compare the probability of each possible response. This in turn
allows us to make a judgement on whether we accept the most likely response
as the prediction.

We would expect that a system, very confident in its decision, would provide a
label set distribution containing one label set with probability 1 and the remain-
ing label sets with probability 0. A system with no confidence would provide
equal probability for all label sets. All other probability combinations would
provide varying levels of confidence between these two bounds. If we need to
quantitatively measure the confidence level provided by a label set distribution,
we can measure the entropy of the distribution:

H = −
∑

yi∈BL

P (yi) log (P (yi)) (6)

which measures the uncertainty provided by the label set distribution [4] (H = 0
means no uncertainty), where 0 × log (0) = 0. The range of H depends on the
number of label sets in our multi-label problem. To adjust the range to [0, 1], we
can use normalised entropy:

H? = −
∑

yi∈BL

P (yi)
log (P (yi))

log (2L)
(7)

where H? = 1 is provided when the probability of all class combinations are
equal.
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Fig. 2. Multi-label distributions with normalised entropy (H?) of 1 (left), 0.5 (centre)
and 0 (right). In this case there are three labels and hence eight label combinations.

Figure 2 shows us examples of distributions and their entropy (using base e).
Note that the only distribution to provide a normalised entropy of 1 assigns all
elements with equal probability (as shown in the left plot of Figure 2). A nor-
malised entropy of 0.5 implies that one item has a much greater probability than
the others (as in the centre plot of Figure 2). Also, an entropy of 0 implies that



one element has probability 1, with the remaining elements having probability
0 (shown in the right plot of Figure 2).

Note that the measure of entropy is used to identify a systems confidence in
its response, but it should not be used to measure the quality of a set of systems
without regard to the systems’ accuracy. For example a system that provides
high levels of entropy for all responses is not worse than a system that provides
low levels of entropy. If both systems happen to have a low accuracy, then the
former may be preferred over the latter.

4 Using Entropy as a measure of Acceptance

We introduced the topic of measuring uncertainty using the normalised entropy
of the multi-label distribution in Section 3. In this section, we will examine if
entropy is correlated to accuracy. Our reasoning is:

– If a portion of the sample space can easily be classified, there is little un-
certainty in the results and hence the entropy of the multi-label distribution
will be low. Low uncertainty also implies that any future predictions should
be accurate, meaning that low entropy corresponds to high accuracy.

– If a portion of the sample space is difficult to classify, there will be high un-
certainty in the results and hence the entropy of the multi-label distribution
will be high. This high uncertainty implies that future predictions are not
likely to be correct, meaning that high entropy corresponds to low accuracy.

In this section, we will first describe the data and multi-label models used.
We will then examine the relationship of probabilistic multi-label entropy to
accuracy.

4.1 Experimental Environment

To perform our investigation, we will use the set of probabilistic multi-label clas-
sifiers presented in Section 2: Probabilistic Label Powerset (PLP), Probabilis-
tic Binary Relevance (PBR), and Ensemble of Probabilistic Classifier Chains
(EPCC). Each of the methods require the use of a set of binary classifiers that
provide a probability measure of its associated label set prediction. In each of our
experiments, we use Support Vector Machines with a Radial Basis kernel, where
the probabilities were estimated using a Laplace prior [1]. The kernel parameter
was kept at the default value of 1/m, where m is the number of explanatory vari-
ables for each observation. The SVM cost parameter for each binary classifier
was tuned using 2 shuffle, 5 fold cross-validation on the training data.

The number of probabilistic binary classifiers required for each method is
shown in Table 2. We find that the Probabilistic Binary Relevance classifier
uses the least number of binary classifiers, while Probabilistic Label Powerset is
expected to use the most.

We chose the three data sets shown in Table 3 to perform our analysis; two
that are commonly used in multi-label research (Emotions and Scene) and the



Table 2. The number of binary classifiers used by each probabilistic multi-label clas-
sifier, where n is the number of binary response variables, u is the number of unique
label combinations of response variables within the training data, and e is ensemble
size.

Method Binary classifiers

PBR n
PLP u(u− 1)/2
EPCC en

Table 3. The data sets used to examine the probabilistic multi-label methods in this
article.

Name Items Train Test Features Labels Avg Label Card Uniq Label Comb

Emotions 593 250 343 72 6 1.8685 27
Scene 2407 1211 1196 294 6 1.0740 15
Stare 373 200 173 44 15 1.3217 42

third from the STARE project1 (the set of diagnoses from a set of retinal images).
The Stare data contains medical diagnoses, where the confidence of prediction
is essential and so is a perfect candidate for this research. Note that these data
sets are relatively small, but to perform our analysis, we require results for each
of the three probabilistic multi-label methods. The Probabilistic Label Powerset
method requires 42× 41/2 = 861 binary classifiers for the Stare data set, which
consumes most of the CPU time and memory on a modern computer. Therefore
it would be difficult to obtain results for larger data sets.

To give perspective on each method, we have presented the training and
testing times for each on each data set in Table 4.

To evaluate the classification accuracy of the models, we report results using
the 0/1 loss function (if the system returns the correct label set as the most
likely label set, it is correct, otherwise it is incorrect). We also examined the use
of Hamming and Jaccard similarity for partial matching of labels and found the
results to be similar to those reported using the 0/1 loss function.

4.2 Experiment

We computed the normalised entropy for each test sample in each of our three
data sets for all three methods. We then examined the accuracy when only con-
sidering the k observations from the test set with the lowest response distribution
entropy. We expected that when considering the mean accuracy of the chosen
k observations, the score should decrease as k increases (since increasing k in-
troduces observations with greater response entropy into the mean calculation).

1 http://www.ces.clemson.edu/~ahoover/stare/



Table 4. The time taken in seconds, for training the model and predicting the state
of one object for each method on the Emotions, Stare and Scene data sets.

Methods
Emotions Stare Scene

Train Test Train Test Train Test

PBR 25.51 0.01 21.85 0.96 1147.03 0.02
PLP 101.06 0.66 275.38 3.01 724.75 2.24
EPCC 76.96 0.30 198.38 19.68 3443.75 1.61
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Fig. 3. Using normalised entropy as a measure of prediction acceptance for the Emotion
data.

The results of this experiment are shown in Figures 3, 4 and 5 for data sets Emo-
tion, Scene and Stare respectively. Note that k is labelled “Decisions made” in
the set of plots, since k can be likened to an entropy threshold in which a practi-
tioner accepts the prediction of the system (makes a decision) when the response
distribution is lower than the threshold, while the remainder are discarded as
untrustworthy.

The lines in these plots were computed by ordering all of the test observations
in order of their normalised entropy. The Accuracy is then computed as the mean
of the accuracies of the observation with lowest entropy, the lowest and second
lowest, the lowest to third lowest, and so on, until the final value is the mean of all
accuracies. Computing the mean in this way causes the first portion of the plot
to be jittery since the mean is computed using a small number of samples. As
the sample size increases the plot smooths out. The varying number of decisions
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Fig. 4. Using normalised entropy as a measure of prediction acceptance for the Scene
data.

made in each of the plots is due to the number of observations available in the
associated data test sets.

4.3 Analysis of Results

The plots show the accuracy, ordered by normalised entropy of the response
distribution. An increase in the plot line towards an accuracy of 1 means that
an accurate prediction was made, a decrease in the line towards an accuracy
of 0 means an inaccurate prediction was made. An optimal measure of system
confidence would have a plot where the line stays at 1 (placing all of the accurate
predictions first), followed by a decrease (placing all of the inaccurate predictions
last).

We find that PLP and EPCC have some inaccurate predictions with low nor-
malised entropy (shown by the initial zig-zagging), but then smoothly decrease
just after the 50 mark. PBR has the initial zig-zagging but then dips at about
the 170 mark, showing a poor ordering of accuracy. The Scene data shows a de-
sired curve from PLP (flat then decreasing), where EPCC and PBR have some
initial zig-zagging, but then a decreasing slope. We also find that each of the
three methods begin with an initial zig-zag and then gradually decrease for the
Stare data.

The general shape of the curves for each plot (flat and then decreasing)
show that normalised entropy is a good candidate for measuring confidence of
a systems prediction. The variance between methods and plots is due to the
different methods used to compute the joint distribution and their behaviour on
each data set. We also see from the plots that by accepting only those predictions



0 50 100 150

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Decisions made

A
cc

ur
ac

y

PLP
EPCC
PBR

Fig. 5. Using normalised entropy as a measure of prediction acceptance for the Stare
data.

that had low normalised entropy, the mean accuracy of accepted predictions is
increased by a significant margin for all methods on all data sets. Therefore
normalised entropy can be used as a measure of acceptance for probabilistic
multi-label classification.

Note that the usefulness of normalised entropy as a measure of acceptance
is dependent on the accuracy of the system. If we generated random response
distributions, some may have low normalised entropy, but also be inaccurate.
Therefore a specialist needs to first choose an appropriate probabilistic multi-
label classifier for their data before normalised entropy can be used.

For most of the data sets, there is little difference in accuracy between meth-
ods at the low “Decisions made” end of the plots. This is likely to be due to
a small sample of points that are simple to classify and hence an independent
multi-label classifier is good enough to accurately classify these. The simplicity
of their classification would also imply that their multi-label distributions would
have low entropy.

5 Conclusion

Multi-label classification allows us to predict the response of many labels at once,
using the correlation between the labels to hopefully improve the prediction ac-
curacy. Critical applications of multi-label learning (such as those used in health,
military and government) require that predictions are paired with a measure of
confidence in the prediction. Probabilistic multi-label classification provides us
with a conditional categorical distribution over the powerset of labels, provid-



ing us with an indication of confidence. Unfortunately, it is not always obvious
what confidence the system has by observing this distribution. Therefore a single
measure of confidence would be useful for specialists using this system.

In this article, we presented a method of determining a probabilistic multi-
label system’s confidence in its prediction using normalised entropy. We exam-
ined correlation of three popular probabilistic multi-label classification method’s
accuracy with normalised entropy, and found that all three provided a general
increase accuracy as the normalised entropy decision threshold reduced. This re-
sult shows that we can gauge a systems confidence in its prediction by examining
the normalised entropy of the predicted label set distribution.
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