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ARTICLE

Velocity zone classification in elite women’s football: where do we draw the lines?
Laurence A. F. Park a, Dawn Scottb and Ric Lovell c

aSchool of Computing, Engineering and Mathematics, Western Sydney University, Sydney, Australia; bHigh Performance Department, US Soccer
Federation, Chicago, IL, USA; cSchool of Science and Health, Western Sydney University, Sydney, Australia

ABSTRACT
Objectives: This study aims to develop generic velocity thresholds for the analysis of external load data
collected in international women’s football matches.
Methods: Doppler-derived recordings of instantaneous velocity and acceleration were collected (10 Hz
GPS) from 27 international female football players during 52 international matches between 2012 and
2015. Data were examined with k-means, Gaussian mixture model (GMM), and Spectral Clustering
methods to identify four velocity zones, in each completed half of match-play (277 observations).
Spectral Clustering was also performed with 4 different smoothing parameters (β values of 0, 0.001,
0.01, and 0.1). Linear-mixed modelling was used to determine generic squad thresholds, accounting for
the within-subject variation.
Results: k-means and GMM generated low transition velocities, which had limited logical validity and
deemed not fit for purpose. Spectral Clustering with a β value of 0.1 derived thresholds that differed
from the various methods adopted in existing literature and industry practice, yet providing a rigorous,
acceptable, and feasible determination of velocity thresholds.
Conclusion: Velocities of 3.46 (12.5 km h−1), 5.29 (19.0 km h−1), and 6.26 m s−1 (22.5 km h−1) are
recommended as entry criteria into high, very-high velocity, and sprinting locomotor categories,
respectively, for the purpose of external load assessments in elite women’s football.
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Introduction

External load monitoring in football training and competition has
become ubiquitous at professional levels around the globe
(Akenhead and Nassis 2016). It is commonly used to track both
men’s and women’s loads (Di Salvo et al. 2007; Rampinini et al.
2007; Bradley et al. 2014a; Datson et al. 2017; Trewin et al. 2018),
but also in other populations such as elite-youth players (Buchheit
et al. 2010; Harley et al. 2010) and even amateur cohorts (Dellal
et al. 2011). In an attempt to capture meaning from the highly
stochastic nature of football activity, the distances covered in
velocity and acceleration are routinely binned in categories, or
zones. The application of generic criteria to denote these zones
facilitates benchmarking the work performed between different
players, positional roles, and competition standards. Researchers
have also used this technique to explore the impact of contextual
factors such as quality of the opposition (Rampinini et al. 2007),
environmental conditions (Nassis et al. 2015), and competition
standard (Bradley et al. 2010) upon physical match performances.
While the use of “zones” or “bins” in time-motion analysis is uni-
versal, the junctures representing the transition between locomo-
tor or intensity classifications are rarely justified.

Early time-motion analyses in football developed locomotor
classifications (e.g., standing, walking, jogging, running, sprinting)
defined by movement characteristics evaluated by single obser-
vers. Mean squad velocities (Bangsbo et al. 1991; Mohr et al. 2003)
were assigned to approximate both total distance covered, and
the distribution of work performed in each movement category.

The assigned velocities were derived from video recordings of
nine players performing specific activities ranging from walking
to sprinting, with the mean velocities determined for each move-
ment category (Bangsbo et al. 1991). With the evolution of auto-
mated player tracking systems, which enabled instantaneous
recordings of velocity at higher sampling resolutions (10–25 Hz),
the velocity zones adopted in both industry practice and academic
research (Di Salvo et al. 2007; Rampinini et al. 2007) seemed to
reflect those previously used in the early locomotor category
approaches to time-motion analysis (Bangsbo et al. 1991); albeit
specific justification for the zone thresholds was not provided.

The theoretical value of categorizing velocity zones using
standardized and arbitrary zones between different players is
questioned, considering the individual nature of both the exer-
cise-intensity continuum (Lovell and Abt 2013; Hunter et al. 2015;
Scott and Lovell 2018), and self-selected transitions between
locomotor categories (Siegle and Lames 2010). These issues
become particularly apparent when applying velocity transitions,
taken from elite-male players, to physical match performance
data taken from lower participation standards, female cohorts,
and youth players. The typical approach has been to lower the
thresholds for any given locomotor category to reflect the typi-
cally lower fitness capacities (Mujika et al. 2009; Harley et al. 2010)
and physical match performances in these populations (Buchheit
et al. 2010; Bradley et al. 2014a). In the case of elite-female
football, some discourse exists regarding the velocity thresholds
to adopt (Bradley et al. 2014a; Bradley and Vescovi 2015; Datson
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et al. 2017), thus further investigation is warranted (Sweeting
et al. 2017b).

Given the challenges of assigning velocity zone criteria for
different populations, based on either research precedent (Mohr
et al. 2003) or fitness capabilities (Harley et al. 2010; Bradley and
Vescovi 2015; Hunter et al. 2015), an alternative approach is to
examine the distribution of the velocity data in retrospective
fashion according to data-mining techniques (Sweeting et al.
2017a, 2017b). This approach was taken by Dwyer and Gabbett
(Dwyer and Gabbett 2012), who fitted four Gaussian curves to
the instantaneous velocity data from a range of male and female
team-sports matches. The intersections between adjacent
Gaussian curves were used to demarcate velocity zones. While
pioneering work, the velocity zones recommended from this
study have largely not been applied in team-sports research,
and are questioned on the following grounds: 1) data were
collected using 1Hz GPS, which, with recent enhancements in
sampling frequency, has been found to be inaccurate (Jennings
et al. 2010) and underestimates sprinting distance (Randers et al.
2010); 2) the female football population sampled was not elite,
reflected by the modest running velocity assigned to classify
sprinting (5.4 m s−1); 3) the low sample size (n = 5; 25 female
football match observations) may not reflect the variation in
physical match performances between matches (Gregson et al.
2010) and positional roles (Datson et al. 2017); and 4) there is no
evidence to suggest that the velocities within each zone follow a
Gaussian distribution. More recently, Sweeting et al. (Sweeting
et al. 2017a) adopted k-means clustering to determine move-
ment sequences in netball, deriving velocity bins from cluster
centroids. However, both k-means clustering and the Gaussian
mixture model (GMM) assume that the instantaneous velocity
data are independent and uncorrelated in nature (i.e., not related
between successive data entries). We know that the instances of
each velocity sequence are not independent (providing the con-
tinuity of the sequence). These two issues suggest that there is
limited foundation to using these data-mining techniques, other
than that they can provide a set of zones.

Accordingly, the aim of the current study was to take a
data-mining approach starting from first principles, to develop
velocity thresholds for elite-female football players. We also
derived thresholds via other data-mining techniques used in
previous work (k-means clustering and Gaussian mixture mod-
eling), in an attempt to evaluate their utility. Considering the
growth and increasing professionalization of women’s foot-
ball, combined with the proliferation of external load monitor-
ing, data of this nature are necessary to inform both academic
research and applied practice.

Materials and methods

Subjects

Physical match data taken from a squad of 27 international
women’s football players (Age: 24.6 ± 3.8 years; Stature:
168.9 ± 4.8 cm; Body Mass: 63.0 ± 4.2 kg; YoYo IR1:
1760 ± 240 m; Maximal Oxygen Uptake: 54.9 ± 3.2 ml kg
min−1; Peak Speed: 8.06 ± 0.42 m s−1), who participated in
52 different matches between 2012 and 2015 was used for this
analysis. The squad was ranked #1 in the FIFA World Ranking

over the assessment period and won the FIFA Women’s World
Cup in 2015. The matches were noncompetitive, scheduled in
preparation for major tournaments. The procedures were
approved by an institutional Human Research Ethics
Committee.

Methodology

Outfield players wore 10 Hz GPS devices (MinimaxX S4, Catapult
Sports, Australia) between the scapulae in a neoprene under-
garment. At the time of data collection, 10 Hz GPS were con-
sidered the most reliable and valid devices available for both
linear and team-sports running (Scott et al. 2016). A minimum
of 45 min of playing time was required for each eligible match
observation to discount the high work-rates associated with
substitute players (Bradley et al. 2014b). Accordingly, analysis
was performed on each playing half (i.e., a player playing a full
90+ min game would provide two match observations), inclu-
sive of added time, to yield the maximum data input to the
model. Doppler-derived instantaneous velocity data was pro-
cessed using the manufacturers “Intelligent Motion Filter” and
the minimum effort duration was set at 0.2 secs. Thereafter, the
data velocity data was exported from the manufacturer’s soft-
ware (Sprint, version 5.1.7, Catapult Sports, Australia) to R (ver-
sion: 3.3.3, R Foundation for Statistical Computing, Vienna,
Austria) for further processing. According to proposed GPS
reporting standards (Malone et al. 2017), preliminary data filter-
ing excluded instantaneous data where the number of con-
nected satellites was less than 8 (range: 8–14 satellites), or the
horizontal dilution of precision was greater than 2.0. Data was
also treated as missing values where acceleration (>6 m.s−2),
deceleration (<−6 m.s−2) and velocity (>10 m.s−1) exceeded
reasonable capabilities for the sample, based upon kinematic
data taken from 100-m sprint athletes (di Prampero et al. 2005).
Match observations consisting of erroneous data that
accounted for more than 3% of the total playing time were
discarded from further analysis (31 match halves); a criterion
applied in consideration of elite female peak high speed run-
ning demands (45 m.min−1; Datson et al. 2017), and the match
file durations (~45 mins). The total number of match observa-
tions analyzed was 277, with a median of 8 per player (mean:
10.3; range: 1–29).

Defining velocity zones

Before partitioning the velocity data into zones, we defined
zone parameters in alignment with the relevant literature
(Rampinini et al. 2007; Hunter et al. 2015; Datson et al. 2017).
Since the distance covered at higher velocities are the most
commonly used physical performance indicators (Akenhead
and Nassis 2016), we proposed a classification system that
amalgamated standing, walking, and slow jogging locomotor
activities in a low velocity zone (LVR), and further sub-categor-
ized higher running distances into high (HVR), very-high velo-
city running (VHVR) and sprinting (SPR). The four zones are
created by identifying three velocity transition thresholds vl, vh
and vv , as shown in Table 1.

The early pioneering work in football time-motion analysis
qualified zones according to locomotor activities such as
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walking, jogging, running and sprinting (Bangsbo et al. 1991;
Mohr et al. 2003), and quantified distances covered based on
the players approximate movement velocity. Accordingly, we
defined a zone as a velocity interval that a player has a natural
tendency to use for any given locomotor category, while the
zone boundaries should be located between these velocity
regions. Players may change zones and hence move at a velo-
city on a zone boundary, but over time, we should find that a
player’s velocity will transition within each zone for the majority
of an activity bout. Using this notion of a zone, we define the
zone boundaries as the set of velocities that are traversed
through the least. In the next section, we formalize this using
mathematical notation.

Determining zones from sequence data

Given a velocity sequence V of length N containing the
ordered velocities v1; v2; . . . vN, where vi is the velocity at the
ith time point, we located the boundaries vl, vh and vv , such
that the velocity traversals were minimal.

For example, to locate only two zones, A and B, they are
found as the subsets that minimize the sum of traversals:

Xva2A;vb2B
tðva; vbÞ

where the sum is over each combination of velocities va and
vb from the zones A and B, and t va; vbð Þ is the number of
transitions from va to vb and vb to va in V . This is known as the
minimum cut problem, aiming to identify the best partitioning
of a graph that minimizes the sum of the weight of the edges
between the partitions. This problem can be solved using
Spectral Clustering. Spectral Clustering has been successfully
used for data segmentation in other fields of research (Park
et al. 2009, 2016) but to the best of our knowledge, has not
been used in sport. The Spectral Clustering algorithm gener-
alizes to provide any number of partitions, and was adopted
here to compute four partitions in the velocity transition data,
providing the three velocity zone boundaries.

Zones from velocity data

The Spectral Clustering algorithm is designed for discrete or
categorical data, thus velocity data was prepared by quantizing
the velocity values into uniform width bins. The velocity bins in
this analysis were of width 0.1 m.s−1 ranging from 0 m.s−1 to
10 m.s−1, providing 100 velocity bins. The transitions between
each velocity bin were recorded from the match velocity data
and provided to the Spectral Clustering algorithm.

Transition smoothing

Spectral Clustering uses the velocity bin transition data, treat-
ing the velocity bins as categories, and disregards the ordering
of the velocity bins. Accordingly, clustering may result in
interleaved velocity zones (i.e., Spectral Clustering might clas-
sify LVR as 0 to 2 m.s−1 and 3 to 4 m.s−1 with the gap being
classified as one of the other zones). To enforce that the
Spectral Clustering delivered ordered partitions (i.e., the first
partition contains velocity bins that are less than the second
partition, and the second are less than the third), neighboring
velocity bin transitions (between bin n and nþ 1) were artifi-
cially increased using a smoothing factor β (with range 0 to 1,
where β ¼ 0 provides no smoothing, and setting β ¼ 1
ignores the raw data and only smoothing information is
used). This style of smoothing is commonly used to ensure
ergodicity (Park and Kotagiri 2011; Park and Simoff 2013). For
the purposes of identifying appropriate velocity zones for
women’s football, the smoothing parameter should be set to
a value close to zero. In this study, β values of 0, 0.001, 0.01,
and 0.1 were applied.

Comparison to other data-mining techniques

The k-means and GMM thresholds (LVR, HVR, VHVR, SPR) were
computed using the sample of player’s velocities. Note that
these two methods ignore the sequence of velocities, treating
each point as being independent of each other. Each set of
velocities has a cluster spike at zero. Therefore, the zero values
were removed before computing the k-means and GMM
thresholds.

Analysis

The velocity zones were computed according to the different
data-mining techniques. The distances covered in each zone
were calculated from instantaneous velocity and acceleration
data using the following equation of motion:

Instantaneous Distance (m)= vit þ 1
2 ait

2 ¼ vi
10 þ ai

200

assuming a 10 Hz signal (t ¼ 0:1), where, vi is the Doppler
velocity, and ai is the Doppler-derived instantaneous
acceleration.

For comparison, the distances covered in generic velocity
zones as adopted in previous research in women’s football
were also determined (see Table 2). We applied the thresholds
typically used in elite-men’s football and previously trans-
posed to examine international women’s activity profiles

Table 1. Criteria for velocity zone categorization.

Category Lower Bound Upper Bound

LVR 0 vl
HVR vl vh
VHVR vh vv
SPR vv 10ms�1

LVR = low-velocity running; HVR = high-velocity running; VHVR = very-high
velocity running; SPR = sprinting

Table 2. Generic thresholds used in existing women’s football research.

Velocity Zone Genericmale (m•s−1) GenericBV (m•s−1)

LVR <4.0 <3.33

HVR ≥4.0 – 5.49 ≥3.34 – 4.44
VHVR ≥5.50 – 6.99 ≥4.45 – 5.55

SPR ≥7.0 ≥5.56

LVR = low-velocity running; HVR = high-velocity running; VHVR = very-high
velocity running; SPR = sprinting.
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(Genericmale) (Datson et al. 2017), together with zones analo-
gous to those recommended by Bradley and Vescovi (Bradley
and Vescovi 2015) (GenericBV).

Velocity thresholds and the distances covered in each
derived zone were log-transformed to reduce nonuniformity
error. Differences in the distances covered in each zone
according to the different data-mining approaches were
examined using linear-mixed models (IBM SPSS version 23.0,
Armonk, NY), using random effects to model the within-sub-
ject variation considering the different match observations
recorded for each player. P-values generated from least-
squared difference post hoc tests, in combination with back-
transformed estimated marginal mean effect statistics, were
imputed into a spreadsheet (Hopkins 2007) to derive magni-
tude-based inferences. The magnitude of the effect was clas-
sified as small, moderate, large, very-large, or extremely large
according to standardized fractions (0.2, 0.6, 1.2, 2.0, and 4.0)
of the between-subject standard deviation, calculated from
the distances calculated according to the Genericmale zones.
Inferences were determined from the disposition of the 90%
confidence interval for the mean difference in reference to the
standardized thresholds (likely = > 75%; very-likely = > 95%;
most-likely > 99.5%), but regarded as unclear if the confidence
intervals overlapped both positive and negative thresholds by
5% (Batterham & Hopkins, 2006). Data are reported as the
back-transformed estimated marginal means with correspond-
ing 90% confidence intervals.

Results

The set of velocity thresholds computed using Spectral Clustering,
k-means, a GMM (as used in Dwyer and Gabbett 2012),
Genericmale, and GenericBV are shown in Table 3. The table also
provides the proportion of sequences thatwere removed from the
analysis, due to providing an invalid partitioning of the sequence.
With no smoothing (β ¼ 0), 28.6% of the transition velocities
generated by the Spectral Clustering were not useable, whereas
only 3.2% of the data was removed when adopting β ¼ 0:1, and
the velocity at zone transitions were similar.

The distribution of the three Spectral Clustering velocity
thresholds per player is shown in Figure 1. The plots show that
similar players appear at the lower and upper end of the
median ordering.

The distances covered in each zone according to the dif-
ferent methods are provided in Table 4. As expected, the
lowered velocity thresholds with GenericBV-derived greater
HSR (likely moderate), VHSR (likely large) and SPR distances
(very-likely very-large) covered versus Genericmale. k-means and
GMM re-distributed the distances covered in each zone and
with very-likely large to most-likely extremely large differences
versus the other techniques. Spectral Clustering increased the
proportion of HSR distance covered (likely small – very-likely
moderate), but generated a higher- and lower-SPR versus
Genericmale and GenericBV, respectively. The different smooth-
ing approaches for Spectral Clustering did not alter the dis-
tribution of distances covered in each zone.

Discussion

The aim of this study was to take a data-mining approach to
establishing new appropriate velocity thresholds for elite
women’s football. We also compared the distances covered
in different velocity zones according to approaches already
used in the literature, together with the new zones generated
retrospectively from a range of data-mining techniques. The
key findings from this study were: A) Gaussian mixture model-
ing and k-means clustering generated comparatively low
thresholds, deemed not fit for practice; and B) Spectral
Clustering derived new squad-mean zones that were subtly
different to those adopted in the research literature, yet gen-
erated meaningful differences in the distances covered in HVR,
VHVR and SPR zones.

Generic velocity thresholds are universally administered in
external load monitoring in sporting contexts (Akenhead and
Nassis 2016). This approach permits the evaluation of training
and competition work-loads, and comparisons between indi-
viduals, exposures, and squads as required by the user.
Historically, the scientific justification underpinning generic
zone criteria has been absent, and seemingly based on a
single pilot study (Bangsbo et al. 1991) conducted on a small
squad of elite-male football players prior to the evolution in
athlete tracking technologies. Accordingly, as external load
tracking has proliferated to other participation standards, dis-
cussion regarding the application of population- (Harley et al.
2010; Bradley and Vescovi 2015; Datson et al. 2017) or player-
specific (Lovell and Abt 2013; Hunter et al. 2015) criteria to

Table 3. Velocity thresholds derived from the various data-mining approaches (Spectral Clustering, k-means, GMM), as compared to those used in previous research.

Method Removed (%) HVR (m•s−1) VHVR (m•s−1) SPR (m•s−1)

Genericmale NA 4 5.5 7.0
GenericBV NA 3.34 4.45 5.56
k-means 0 1.05

(1.03–1.07)
2.10

(2.07–2.12)
3.60

(3.56–3.63)
GMM 0 0.56

(0.55–0.57)
1.53

(1.51–1.54)
3.05

(3.02–3.08)
Spec Clust (β ¼ 0:1) 3.2 3.46

(3.40–3.52)
5.29

(5.23–5.35)
6.26

(6.20–6.32)
Spec Clust (β ¼ 0:01) 16.6 3.54

(3.47–3.60)
5.38

(5.32–5.45)
6.30

(6.24–6.37)
Spec Clust (β ¼ 0:001) 17.5 3.56

(3.49–3.63)
5.39

(5.32–5.45)
6.30

(6.23–6.37)
Spec Clust (β ¼ 0) 28.6 3.58

(3.51–3.65)
5.41

(5.34–5.48)
6.27

(6.20–6.33)

LVR = low-velocity running; HVR = high-velocity running; VHVR = very-high velocity running
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facilitate interpretation of training and competition has
emerged. Where studies have adjusted generic zone thresh-
olds for female or youth squads, the common approach or
recommendation has been to use cohort-specific physical
characteristics to inform velocity transition criteria (Harley
et al. 2010; Bradley and Vescovi 2015). For example, Bradley
and Vescovi (Bradley and Vescovi 2015) recommended velo-
city thresholds based upon fitness data reported in the litera-
ture, in combination with data collected from a women’s
collegiate football squad. However, these recommendations
have not been administered in research or applied practice
on the basis that the data which derived the thresholds failed
to reflect the athletic characteristics of elite-standard players
(Datson et al. 2017). While using squad-mean velocities corre-
sponding to physical and/or physiological characteristics to
inform velocity zones has logical validity, in practice this tech-
nique is limited as squad zones may differ both within and
between seasons, and are subject to variation when players
transition between squads or are unavailable for physical
screening.

A feasible alternative for determining population-specific
velocity zones is to retrospectively examine latent properties
in their external load data using data-mining techniques
(Sweeting et al. 2017b). Given the availability of extensive
player tracking data-sets which are collected routinely during
professional competition, data-mining presents a feasible,
affordable, and theoretically robust approach to deriving
population-specific velocity zones. To the best of our knowl-
edge, Dwyer and Gabbett (Dwyer and Gabbett 2012) were the
first to adopt this approach to external load data, using GMMs
to fashion sport- and gender-specific velocity thresholds for a
range of team-sports. This approach assumes that the data
points are generated from a user-defined number of Gaussian
distributions with unknown parameters. The estimated mar-
ginal mean thresholds identified via GMM in our study differed
considerably from Dwyer and Gabbett (Dwyer and Gabbett
2012). Principally, the “sprint” threshold derived was lower
(3.05 vs 5.4 m•s−1), which may reflect between study differ-
ences in the GPS sampling frequency or the number of female

football match observations. Notwithstanding, the GMM does
not consider the sequential pattern of consecutive velocity
data-points, and as discovered in the current study, the limited
observations of velocities typically associated with sprinting
incorrectly assumes a Gaussian distribution. Accordingly, the
underlying assumptions of the GMM preclude their utility in
determining appropriate velocity zones in football, and our
findings support this contention.

Application of k-means clustering for categorizing velocity
data has also been suggested (Sweeting et al. 2017b), and used
to identify common movement sequences in netball (Sweeting
et al. 2017a). The k-means algorithmoperates iteratively to assign
each observation to one of k-specified clusters (four in this study)
based on the closest centroid. This data-mining technique is also
limited by the discreet manner in which each velocity observa-
tion is treated; however, it has no underlying assumptions
regarding the distribution of the data. The velocity zones derived
were low compared to existing methods, with transition veloci-
ties approximately 0.5 m•s−1 higher versus the GMM approach.
These findings likely reflect the comparatively low density of
observations at high-velocities in competitive team sports
(Rampinini et al. 2007; Gregson et al. 2010; Datson et al. 2017),
and question the utility of the k-means algorithm for prescribing
velocity bins in athlete movement tracking.

Spectral Clustering was considered more appropriate for velo-
city data considering that the structure of the individual clusters
(zones) is not suitably described by the center and dispersion of
the complete data-set. The Spectral Clustering thresholds derived
in the analysis weremuch larger than both k-means andGMMand
provided thresholds within the range of those adopted in current
industry practice. Specifically, the transition velocity to HVR was
similar to that recommended for female players by Bradley and
Vescovi (Bradley and Vescovi 2015), but entry points into VHVR
and SPR zones resided between these recommendations and the
generic thresholds commonly used for male external load data in
football. However, application of the newly proposed velocity
thresholds had a meaningful impact upon the distance-covered
metrics, with very-likely small to likely very-large effect sizes
observed when compared to GenericBV and Genericmale (see

Table 4. Distances covered in each velocity zone (m) according to the different approaches used to retrospectively generate thresholds and those commonly applied
in research literature.

Method LVR HVR VHVR SPR

Genericmale 3587a

(3516–3659)
434a

(419–449)
100d

(95–104)
19a

(18–20)
GenericBV 3162b

(3100–3226)
589a

(568–610)
254a

(244–266)
101a

(96–107)
k-means 559a

(548–570)
1312a

(1124–1207)
1402a

(1343–1463)
784a

(743–828)
GMM 135a

(132–138)
1166a

(1124–1207)
1591a

(1524–1661)
1147a

(1087–1210)
Spec Clust (β ¼ 0:1) 3265

(3200–3331)
699c

(675–724)
106d

(101–110)
36c

(34–38)
Spec Clust (β ¼ 0:01) 3308

(3242–3374)
670c

(647–694)
94d

(90–98)
34c

(32–36)
Spec Clust (β ¼ 0:001) 3328

(3262–3395)
657c

(634–681)
92d

(89–97)
34c

(32–26)
Spec Clust (β ¼ 0) 3334

(3268–3402)
655c

(632–679)
87d

(84–91)
37c

(35–39)
a denotes difference versus all other methods; b denotes difference versus Spectral Clustering (β ¼ 0:01; 0:001; 0) and Genericmale;

c difference versus Genericmale,
GenericBV, k-means, and GMM; d difference versus GenericBV, k-means, and GMM. LVR = low-velocity running; HVR = high-velocity running; VHVR = very-high
velocity running; SPR = sprinting
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Table 4). Increasing the smoothing parameter increased the num-
ber of valid partitionings (as intended), but while slightly reducing
the HSVR and VHSR entry thresholds, nomeaningful change in the
distances covered were observed. This may suggest that the
Spectral Clustering method is robust to the choice of smoothing
parameter. However, with no smoothing (β ¼ 0), 28.6% of the
intervals were not useable, compared with 3.2% with β ¼ 0:1.
Accordingly, application of β ¼ 0:1 in this studymodelled a larger
data-set, which may derive more accurate thresholds. Further
workmaybewarranted to examine the impact of other smoothing
parameters, although users are cautioned against over-smoothing
raw Doppler velocity and acceleration data.

We acknowledge that the new thresholds learned in this
study via data-mining techniques reflect the workload profiles
of the sample, which are likely influenced by the positional
role, the standard of opposition, match status and the squads
tactical approach. Hence, the playing standard of women’s
football players should be considered by the load-monitoring
practitioner prior to implementation. However, the modest
sample size adopted in our analysis (227 match observations
taken from 27 players) to some degree encapsulated the high-
degree of between-match variation observed in football high-
velocity running metrics (Gregson et al. 2010; Trewin et al.
2018). At the time of data-collection, GPS devices were not
permitted for use in competitive tournaments or their qualifi-
cation matches, and the current dataset was collected from
preparatory fixtures. Accordingly, further work may be war-
ranted to evaluate the new thresholds proposed in the current
study using data sampled from multiple teams during compe-
titive tournaments. Although the data-mining approaches
employed in this study permit the determination of indivi-
dual-specific zones (see Figure 1), development of new gen-
eric zone criteria were prioritized in this study given the high
prevalence of generic velocity zones used to monitor player
workloads in industry practice (Akenhead and Nassis 2016).
While individualization of velocity zones maybe considered
valuable to the interpretation and evaluation of player-specific
work-loads, generic zones provide benchmarks for comparison
both within and between teams.

In summary, the current study examined a range of data-
mining techniques in an attempt to provide new time-motion
analysis velocity thresholds for elite women’s football players.
This study adds new insights to the debate around the appro-
priate velocity thresholds to use for populations other than
elite-male football players. We identified that k-means cluster-
ing and Gaussian mixture modeling were not appropriate for
football given the limited instances in which players move at
velocities associated with sprinting, which are often consid-
ered key physical performance indicators. A Spectral
Clustering technique with application of a β ¼ 0:1 smoothing
factor derived new thresholds featuring both logical validity
and analysis rigor. Accordingly, we would recommend that
examination of velocity data in elite women’s football use
3.46 (12.5 km h−1), 5.29 (19.0 km•h−1), and 6.26 m•s−1

(22.5 km•h−1), to denote entry into HVR, VHVR, and SPR gen-
eric categories, respectively. Similar analyses may be war-
ranted to determine appropriate velocity zones for other
sports and youth populations.
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