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Abstract
Analysis of retinal blood vessels allows us to identify individuals with
the onset of cardiovascular diseases, diabetes and hypertension. Unfor-
tunately, this analysis requires a specialist to identify specific retinal fea-
tures which is not always possible. Automation of this process will allow
the analysis to be performed in regions where specialists are non-existent
and also large scale analysis. Many algorithms have been designed to ex-
tract the retinal features from fundus images. However, to date, these
algorithms have been evaluated using generic image similarity measures
without any justification of the reliability of these measures. In this
article, we study the applicability of different measures for retinal ves-
sel segmentation evaluation task. In addition, we propose an evaluation
measure, F1, which is based on precision, recall and F-measure concept
to deal with this evaluation task. An important property of F1 is its
tolerance of small localization errors which often appear in a segmented
image, but do not affect the desired retinal features. The performances
of different measures are tested on both real and synthetic datasets which
take into account the important properties of retinal blood vessels. The
results show that F1 provides the greatest correlation to the desired eval-
uation measure in all experiments. Thus, it is the most suitable measure
for retinal segmentation evaluation task.
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1. INTRODUCTION

Changes in retinal blood vessel features (e.g. vessel cal-
iber, branching angle, etc.) are precursors of serious dis-
eases such as cardiovascular diseases and stroke [1]. There-
fore, an analysis of retinal vessel features can assist in de-
tecting these changes and allow the patient to take action
while the disease is still in its early stage. An automated
retinal analysis system would allow us to perform reti-
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nal analysis in regions of the world where specialists are
not available and reduce the cost associated with trained
graders and remove the issue of inconsistency introduced
by manual grading. Among different retinal analysis tasks,
retinal blood vessel extraction plays an extremely impor-
tant role as it provides the prerequisite result before any
measurements may be made. Although many algorithms
have been designed for retinal blood vessel segmentation
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], there
has been no investigation of how we should evaluate the ef-
fectiveness of these algorithms. So far, evaluation of these
algorithms has been performed using generic binary image
similarity measures such as the accuracy ([6, 10, 7, 11, 9,
5, 8, 4, 13, 12, 14]), true positive rate and false positive
rate ([10, 7, 4, 12]). However, they are used without any
justification or analysis of the reliability of these measures.
Motivated by this, this paper studies the suitability of dif-
ferent measures to address this evaluation task. A modified
version of F1 score (called F1) which allows small localiza-
tion error which is often present in a segmented image is
also proposed to deal with this task. A set of experiments
tested on synthetic and real datasets show that the pro-
posed measure provides the most suitable evaluation scores
and thus is the best measure to be used for retinal image
segmentation evaluation.

The rest of the paper is organized as follows. In sec-
tion 2, a brief introduction of currently used measures for
retinal vessel extraction evaluation is presented. A formal
description of the proposed measure, F1, is given in sec-
tion 3. In section 4 and 5, we present the results of the
experiments on synthetic and real datasets, respectively.

2. EXISTING MEASURES

Before introducing general measures used for compar-
ing binary images, we first present the notations used in
this paper based on the definitions in [18]. Suppose that
IA and IB are two binary images representing the ground
truth and the estimated segmentations of a given image,
respectively. Each pixel of IA and IB takes one of two val-
ues: 0 (background pixels) and 1 (object pixels). We can
describe IA and IB by their set of object pixel coordinates
A and B, respectively. Let X denote the set of all possible
pixel coordinates of the given image and n(·) be the set
cardinality operator. For example, n(X) is the number of
elements of set X. Set operators such as minus (\), union
(∪), intersection (∩), and negation (¬) are defined as in set
context. For example, A \ B is the set of all object pixels
belonging to A but not B, A∪B is a set of all object pixels
belonging to either A or B, A ∩ B is the set of all object
pixels belonging to both A and B, ¬A is the set of all pix-
els of the image except those pixels in A (or background
pixels).

2.1. Existing measures for retinal blood vessel segmenta-
tion

The accuracy measure (ACC), true positive rate (TPR)
and false positive rate (FPR) are prevalent in retinal vessel
segmentation evaluation. They are defined as follows:

ACC(A,B) =
n((A ∩B) ∪ (¬A ∩ ¬B))

n(X)
(1)

TPR(A,B) =
n(A ∩B)

n(A)
(2)

FPR(A,B) =
n(B \A)

n(X \A)
(3)

They are called pixel based measures since the evalua-
tion score is computed based on the number of correctly or
incorrectly classified pixels. A drawback of these measures
is their inability to deal with small localization errors. For
example, if two objects detected by two different segmen-
tations are identical but one of them is a shifted version
(by a small distance) of the other, there are many pixels
identified as incorrectly detected and the similarity score
returned by these measures would be lower than expected.
Such errors can easily appear in a segmentation result es-
pecially at the boundary of an object since the exact loca-
tion of an object edge is difficult to establish. This quality
leads us to hypothesize that pixel based measures are not
suitable for retinal image vessel segmentation evaluation.

2.2. Distance based measures

In contrast to pixel based measures which only uti-
lize the number of mis-segmented pixels, distance measures
are based on the position of mis-segmented pixels. Typi-
cal measures are the mean squared error distance (MSE)
[18], the Hausdorff distance (H) [18], the figure-of-merit
(FOM) [19], and the p-order mean difference (∆p) [18].

Suppose that A is the set of object pixels of a binary
image and d(x,A) denotes the shortest distance from pixel
x to A. d(x,A) is defined as:

d(x,A) = min{ρ(x, y) : y ∈ A} (4)

where ρ(·, ·) is a metric and ρ(x, y) is the distance between
pixel x and y. The mean squared error distance (MSE)
[18] is defined as the average squared shortest distance of
all pixels in the estimated image B to A:

MSE(A,B) =
1

n(B)

∑
x∈B

d2(x,A) (5)

The Hausdorff distance (H) [18] measures the largest dis-
tance among all of the shortest distance connecting every
pixel from A to B and from B to A:

HM(A,B) = max{max
x∈B

d(x,A),max
x∈A

d(x,B)} (6)
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Figure of merit (FOM) [19] is a popular measure for eval-
uating edge detection algorithms:

FOM(A,B) =
1

max{n(A), n(B)}
∑
x∈B

1

1 + αd2(x,A)
(7)

where α is a constant and is often set to 1/9 [18]. The
p-order mean difference (∆p) [18] is a defined as:

∆p(A,B) =

[
1

n(X)

∑
x∈X

|w(d(x,A))− w(d(x,B))|p
]1/p

(8)
The function w(·) is called cutoff transformation and de-
fined as:

w(t) = min{t, c} (9)

where the cutoff distance, c, is a constant positive value.
It is set to 5 (as in [18]) in all of our experiments.

By taking into account the distance information, dis-
tance based measures can overcome the limitation of pixel
based methods to some extent. Therefore, the perfor-
mance and applicability of these methods will be validated
through our experiments.

3. PROPOSED MEASURE

The proposed measure is a modifier of F1 score which is
widely used for information retrieval evaluation. The un-
derlying difference between the proposed measure and the
traditional F1 score is the way precision and recall are com-
puted to take into account small localization errors which
are often present in a segmented image. Due to the simi-
larity between these two measures, the proposed measure
is also referred to as F1 in the whole paper.

Given a ground truth segmentation A and an estimated
segmentation B, our measure first identifies the number
of pixels correctly detected in the segmentation A when
compared to the other segmentation B and vice versa. We
define:

BA = {x|x ∈ B, d(x,A) ≤ t} (10)

AB = {x|x ∈ A, d(x,B) ≤ t} (11)

where d(·, ·) is defined in Eq. (4), BA is the set of correct
pixels of B when compared to A and vice versa for AB. A
pixel of B is considered as correct if it is close to at least
one pixel of A. The closeness is identified by the threshold
value t. For example, if t = 1, a pixel of B is correct if it is
less than or equals to one pixel distance to any pixel of A.
The distance metric ρ(·, ·) used is the chessboard distance.
In other words, if t = 1, a pixel of B is considered as correct
if it belongs to the 8-neighborhood of at least 1 pixel of
A. This allows us to identify the number of correct pixels
in each binary image and allows small localization errors.
The number of correct pixels is defined as the minimum of
n(BA) and n(AB):

M = min{n(BA), n(AB)} (12)

A Extended A BAB

Figure 1: Computing BA when t = 1. We first extend the boundary
of A by 1 pixel to obtain “Extended A”. The set BA is the intersec-
tion of B and “Extended A” (shown as the black pixels in the image
BA).

Precision and recall are then employed to partially evaluate
the exactness and completeness of the result:

precision =
M

n(B)
; recall =

M

n(A)
(13)

Precision is defined as the fraction of the number of cor-
rect pixels over the total number of pixels detected in the
estimated image. Thus, it measures the exactness or the
accuracy of the result. Recall, on the other hand, measures
the completeness of the result as it is defined as the fraction
of correct pixels over the number of pixels of the ground
truth segmentation. The F1 measure is a combination of
precision and recall:

F1 =
2× precision× recall

precision+ recall
(14)

where F1 ranges from 0 to 1. By taking the role of the
ground truth and the estimated segmentation equally in
the evaluation, F1 is a symmetric measure. F1 has one
parameter, t, known as the threshold. The parameter t
can take any positive integer (including zero); the greater
the value of t, the more tolerant F1 is towards error.

Implementation of our method is straight forward. Given
two binary images, A and B, the first task is to identify
the set of pixels in BA. We first extend the boundary of A
by t pixels. This is demonstrated in Fig. 1 with t = 1. BA
is then identified as the intersection of B and the extended
version of A. This is done similarly for AB. Once BA and
AB are computed, they are combined to produce the F1

measure.

4. VALIDATION ON SYNTHETIC DATA

In this section, the performances of different measures
are assessed based on their behavior on a set of synthetic
data. The synthetic data set was designed to resemble
the vessels at a fine resolution scale. In all experiments,
the performances of the existing distance based measures
(MSE, H, ∆p with p = 2 and cutoff c = 5, and FOM
with α = 1/9) and the measures currently used for retinal
segmentation evaluation (TPR, FPR, and ACC) are eval-
uated along with our proposed measure F1. To implement
distance based measures, the distance transformation pro-
posed by [20] was used to compute the shortest distance
d(x,A) and d(x,B).
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4.1. Criteria of a good evaluation measure

This section aims at identifying the target criteria of
a good evaluation measure. We first identify important
properties of blood vessels that should be reflected in each
segmented image. Then we determine possible small defor-
mations that can happen between two segmentations and
identify which changes should affect the score and which
should not. This analysis helps us to design a set of syn-
thetic data to test the performance of different measures.

Important features of retinal blood vessels that are used
for diagnosis are vessel diameter, branching angle, bifurca-
tion angle, and vessel gap. Vessel diameter is a measure
of the width of a vessel. Branching angle is the angle be-
tween the main vessel and one of its branches. Bifurcation
angle is the angle between two branch vessels at which the
main vessel splits into two vessels. Vessel gap indicates
the discontinuity of the vessel at a certain place. All of
these features are demonstrated in Fig. 2. Many research
studies indicate that the changes of these features are pre-
cursors of many diseases. For example, the decrease of
vessel arterial diameter or bifurcation angle is found in hy-
pertensive and diabetic patients [21]. The presence of the
gap is an extreme case of vessel nicking, which is in turn a
sign of stroke [22]. Therefore, a good segmentation method
should retain these properties unchanged in the segmented
image. Otherwise, the following diagnosis steps based on
the segmentation result will produce unreliable results.

Branching angle

Gap

Diameter

Bifurcation angle

Figure 2: Important properties of retinal blood vessels: vessel diam-
eter, branching angle, bifurcation angle and vessel gap (representing
the disconnection of a vessel).

Small differences between segmentation results can be
divided into two groups: those that do not affect the vessel
properties and those that do. Shift and noise are two pos-
sible deformations that belong to the first group. Shift is
where the whole or a part of a vessel in an image is shifted
by some small distance compared to the corresponding ves-
sel in the other image. This often happens in a segmenta-
tion result since the boundary of a vessel is often difficult to
establish. Noise refers to the presence of additional pixels
that do not affect the visual quality of the desired features.
Such noise often happens in the segmentation results pro-
duced by computerized algorithms. Generally, these differ-
ences do not affect the vessel properties and hence should
not be penalized by an evaluation measure.

The second group contains changes that affect impor-
tant vessel properties. This can be the increasing or de-

creasing of the branching and bifurcation angle, or the ex-
pansion or contraction of the vessel which affect the vessel
diameter. This can also be the presence of vessel gap in
only one of the two considering segmentations, leading to
a false detection of the vessel gap. All of these changes
should be penalized by the evaluation measure.

From this point of view, a good evaluation measure
for retinal blood vessel segmentation should be tolerant
to small deformations that do not affect vessel properties
but be able to recognize and penalize changes that affect
important vessel properties. In other words, a good mea-
sure should provide lower penalty to changes that do not
affect the important vessel properties, while providing a
high penalty to changes that do affect important blood
vessel properties.

4.2. Experiment 1: Comparing Types of Change

In the first experiment, we test the ability to distin-
guish the changes in two deformation groups as discussed
in section 4.1. Changes in the first group are represented
by B1 and B2 while changes in second group include C1,
C2 and C3 as shown in Fig. 3. A good evaluation mea-
sure should provide higher similarity scores to B1 and B2
than C1, C2 and C3. Moreover, compared to the shift case
(B1), the noise case (B2) is more likely to affect the whole
image. So the expected ranking for this example is: [B1
B2 C1 C2 C3] = [1 2 3 3 3] (1 is the best rank).

A: Ground truth B1: Shift B2: Noise

C1: Gap C2: Expansion C3: Angle

Figure 3: Possible small deformations when comparing two segmen-
tations, used as the first synthetic test cases. Images B1 and B2 show
changes that do not affect important vessel properties. Images C1,
C2 and C3 show changes that do affect important vessel properties.

Table 1 shows the evaluation scores obtained by all
measures on this example. These measures are divided
into two groups: similarity measures (F1, TPR, ACC,
FOM) and dissimilarity measures (FPR, MSE, H, ∆2).
A similarity measure increases as the images increase in
similarity, while a dissimilarity measure decreases as the
images increase in similarity. The results show that only
F1 gives the expected result. TPR is in favor of expansion
case (C2) while FPR is biased towards the gap case (C1).
TPR and FPR show low similarity for the shift case. On

4
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the other hand, distance measures MSE and H show low
similarity for the noise case (B2). ACC gives the lowest
similarity to the shift case (B1) while FOM provides the
greatest similarity to the expansion case (C2). ∆2 shows
higher similarity for the gap and expansion cases (C1 and
C2) compared to the noise and shift cases (B1 and B2).

To measure the correlation between the ranking ob-
tained by each measure with the expected ranking, the
correlation scores were computed using Kendall’s tau co-
efficient and presented at the last row of the table. The
correlation scores range from −1 to +1 with a value of
+1 means that two rankings are identical. The correlation
scores indicate that F1 provides the most desirable ranking,
followed by FOM .

4.3. Experiment 2: Comparing Degree of Change

In this experiment, we test the ability to produce de-
creasing similarity scores when the differences in the im-
portant vessel properties increase. In Fig. 4, from the top
to the bottom row, changes in vessel gap, vessel diameter,
branching angle and bifurcation angle are shown. The first
column shows the ground truth images for each case while
B1, B2 and B3 columns are images showing changes in an
increasing order. For each case, the expected ranking of
[B1 B2 B3] is [1 2 3].

A: Ground truth B1 B2 B3
Figure 6

Figure 4: Increasing changes in important vessel properties, used
as the second set of synthetic test cases. The important features
varied are (from top to bottom row) gap, expansion, branching angle,
bifurcation angle.

Table 2 shows the evaluation and correlation scores
obtained (using Kendall’s tau coefficient) by all measures
through these four cases. The hyphen symbol (-) in this
table means that the Kendall’s tau value is undefined (cor-
responding to the case: [B1 B2 B3] = [1 1 1]). It is

shown that only 3 measures (F1, FOM and ∆2) satisfy
this test, meaning that they can recognize and evaluate
these changes reasonably.

5. VALIDATION ON REAL DATA

In this study, the performances of all measures are as-
sessed based on their evaluation of six retinal segmenta-
tion methods (Manual, Soares [11], Staal [13], Niemeijer
[14], Perez [10] and Jiang [15]) on 20 test images from
the DRIVE database [14]. Each image in the test set is
manually segmented twice and this results in two manual
segmentations for each image. In this experiment, the first
manual segmentations were used as the ground truth while
the second manual segmentations were used as the results
of a manual method. The segmentation results of Soares
method were obtained from their website1. The segmen-
tations of all remaining methods were obtained from the
Image Sciences Institute website2 and thresholded at ap-
propriate levels. These six segmentation methods are used
for comparing the performance of different measures since
the order of their segmentation quality can be clearly seen.
The evaluation of these methods was done by a visual in-
spection on their segmentation results using many criteria
(i.e. rewarding these methods that produce accurate vessel
width and those that can detect small vessels while penal-
izing these methods the produce vessel disconnection (or
vessel gaps)).

The Manual method is ranked highest as it produces
high accurate vessel width and it does not introduce any
vessel gap in their segmentation results. Soares and Staal
are the next two methods that give good segmentation
around the vessel boundary. However, compared to Soares
method, Staal method often introduces vessel gaps in a
segmentation, especially at bifurcation and branching re-
gions. Niemeijer method produces similar segmentation as
Staal method but it can not detect many small vessels as
Staal method does. Perez method is ranked next as there
is noise associated with small vessels (this affects to the
vessel width). Jiang method is ranked last as only big ves-
sels are detected and there are many vessel gaps present in
their segmentation. These properties are observed consis-
tently on the segmentation results of these methods on 20
DRIVE test images. Hence, the expected ranking of these
methods (in a decreasing order) should be: Manual, Soare,
Staal, Niemeijer, Perez, Jiang.

The evaluation results are presented in Table 3. To
measure the correlation between the evaluation produced
by each measure and the expected ranking, Kendall’s tau
coefficient was used. The correlation scores are presented
at the last row of the table. It is shown that four measures,
F1, ACC, H and ∆2, follow the expected ranking. How-
ever, compared to ACC, F1 scores spread a wider range

1http://sourceforge.net/projects/retinal/files/mlvessel/
2http://www.isi.uu.nl/Research/Databases/DRIVE/
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Table 1: Evaluation and correlation scores of all measures on the test cases from Fig. 3.

Case
Similarity measures Dissimilarity measures

F1 TPR ACC FOM FPR MSE H ∆2

B1 1 .569 .805 .957 .126 .431 1 .810
B2 .983 1 .992 .976 .010 .867 6 .948
C1 .852 .741 .941 .741 0 0 3 .773
C2 .879 1 .938 .978 .081 .216 1 .433
C3 .931 .845 .930 .950 .045 .776 4 1.127
Corr 0.84 -0.25 -0.12 0.12 -0.36 -0.36 0 -0.12

Table 2: Evaluation and correlation scores of all measures on the test cases from Fig. 4.

Case
Similarity measures Dissimilarity measures

F1 TPR ACC FOM FPR MSE HM ∆2

Gap

B1 .945 .897 .977 .897 0 0 1 .234
B2 .885 .793 .953 .793 0 0 2 .512
B3 .816 .690 .930 .690 0 0 3 .848

Corr 1 1 1 1 - - 1 1

Expansion

B1 .879 1 .937 .978 .081 .216 1 .433
B2 .817 1 .898 .969 .131 .309 1 .590
B3 .744 1 .844 .959 .202 .408 1 .734

Corr 1 - 1 1 1 1 - 1

Branching angle

B1 .965 .845 .930 .959 .045 .517 3 .976
B2 .897 .845 .930 .938 .045 1.19 5 1.32
B3 .862 .845 .930 .907 .045 3.53 8 1.82

Corr 1 - - 1 - 1 1 1

Bifurcation angle

B1 .951 .732 .914 .953 0.051 .561 2 .803
B2 .843 .732 .910 .899 0.056 1.59 3 1.19
B3 .771 .707 .902 .866 0.060 2.81 5 1.59

Corr 1 0.82 1 1 1 1 1 1

which means that it has higher discrimination capability
than ACC.

To study the dependence of F1 to the threshold t, an
experiment was performed to examine F1 behavior when t
changes. Table 4 shows the evaluation of F1 measure on six
segmentation methods when t increases from 0 to 10. The
last row of this table presents the correlation between the
ranking obtained and the expected ranking. It is shown
that F1 measure gives expected evaluation with the first 5
values of t and the correlation scores decrease as t increases
for the remaining values of t. On DRIVE dataset, the
largest vessel width is about 8-9 pixels and a reasonable
setting of t is from 0 to 4. So with a new image set, t should
be set as smaller than half of the largest vessel width in
order to obtain a good evaluation.

If a small amount of noise is added to a vessel segmen-
tation image, it does not affect the visual quality of the
desired retinal features. Therefore, it should have little ef-
fect on the similarity score. To test the ability to deal with
noise of all measures, we add salt and pepper noise with
increasing density to a segmented image and analyze the

behavior of these measures. Fig. 5 shows the first manual
segmentation of an image in the DRIVE database and its
sub-image which is used as the ground truth for this exper-
iment. A set of test images used for comparison are pre-
sented in Fig. 6. The image labeled Manual was extracted
from the second manual segmentation of the same image.
The three images named Noise 1, Noise 2 and Noise 3 are
three variations of the Manual image by adding salt and
pepper noise with the noise density of 0.01, 0.02, and 0.03,
respectively. The last two images, Perez and Jiang, were
extracted from the segmentations obtained by the Perez
and Jiang methods correspondingly.

The images in both figures show that the Manual im-
age is the most similar to the ground truth image. On the
other hand, the quality of the Perez and Jiang segmenta-
tions are much worse than the Manual one. In addition, the
salt and pepper noise does not affect the visual quality of
the desired features in the Manual segmentation. There-
fore, the three images Noise 1, Noise 2, Noise 3 should
get higher similarity scores than those of Perez and Jiang.
Thus, the expected ranking of [Manual, Noise1, Noise 2,

6
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Table 3: Average evaluation scores and correlation scores of all measures when evaluating 6 retinal segmentation methods across 20 DRIVE
test images.

Method
Similarity measures Dissimilarity measures

F1 TPR ACC FOM FPR MSE H ∆2

Manual .918 .776 .947 .889 .028 5.1 41.6 .743
Soares [11] .897 .728 .947 .849 .021 2.3 52.9 .873
Staal [13] .883 .735 .944 .848 .025 8.4 53.5 .920
Niemeijer [14] .849 .673 .942 .770 .019 5.6 61.6 1
Perez [10] .838 .744 .932 .852 .041 14.2 70.6 1.096
Jiang [15] .761 .648 .922 .828 .037 3.3 82.3 1.176
Corr 1 0.47 1 0.47 0.2 0.2 1 1

Table 4: Evaluation and correlation scores of F1 measure when evaluating 6 retinal segmentation methods with threshold t changes from 0
to 10.

t 0 1 2 3 4 5 6 7 8 9 10
Manual .788 .918 .928 .932 .934 .937 .939 .940 .942 .943 .944
Soares [11] .776 .897 .909 .915 .918 .920 .922 .923 .924 .926 .926
Staal [13] .768 .883 .896 .903 .907 .910 .913 .915 .917 .918 .920
Niemeijer [14] .743 .849 .861 .864 .867 .869 .871 .872 .874 .874 .875
Perez [10] .697 .796 .808 .816 .823 .829 .835 .840 .845 .850 .854
Jiang [15] .678 .761 .792 .815 .835 .849 .860 .868 .876 .882 .888
Corr 1 1 1 1 1 0.87 0.87 0.87 0.73 0.73 0.73

Figure 5: The first manual segmentation of test image 19 (from the
DRIVE database) and its selected sub image used as the ground truth
in the last experiment.

Noise 3, Perez, Jiang] should be [1, 2, 3, 4, 5, 6].
The evaluation results of all measures are presented in

Table 5. The last row of this table presents the correlation
values obtained by each measure when compared to the
expected ranking. The results show that distance based
measures (FOM , MSE, H and ∆2) give very low corre-
lation scores. TPR and ACC produce better evaluation
with higher correlation score (0.6 for TPR and 0.87 for
ACC) but they put higher value to Perez and Jiang im-
ages than those noisy images. Only F1 and FPR give the
expected ranking with a perfect correlation score of 1. This

Manual Noise 1 Noise 2

Noise 3 Perez Jiang

Figure 6: The sub image from the second manual segmentation (Man-
ual) with varying levels of added noise (Noise 1, Noise 2, Noise 3), and
the associated sub images from the Perez and Jiang segmentations.

indicates that F1 and FPR is more robust to noise than
the remaining measures. However, FPR measure does not
give expected evaluation in previous experiments. Hence,
F1 is the most suitable measure for retinal image segmen-
tation evaluation.

6. CONCLUSIONS

Although many algorithms have been designed to au-
tomate the retinal blood vessel extraction task, there has
been no investigation of how we should evaluate the ef-

7
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Table 5: Evaluation and correlation scores of all measures when evaluating sub-images presented in Fig. 6.

Method
Similarity measures Dissimilarity measures

F1 TPR ACC FOM FPR MSE H ∆2

Manual .918 .895 .952 .958 .038 4.41 34 0.81
Noise 1 .912 .890 .948 .941 .042 7.01 36 1.08
Noise 2 .901 .886 .943 .924 .048 8.65 34 1.31
Noise 3 .888 .885 .938 .909 .052 10.97 34 1.49
Perez .842 .895 .940 .938 .053 2.52 34 1.10
Jiang .746 .796 .901 .929 .080 1.14 37 1.24
Corr 1 0.6 0.87 -0.47 1 -0.2 0.26 0.47

fectiveness of these algorithms. So far, the evaluation of
these algorithms has been performed using generic binary
image similarity measures, which do not seem appropriate
for the task. In this article, we have investigated the qual-
ities of different evaluation measures and proposed a new
measure, called F1, that utilizes the precision, recall and
F-measure concepts. A set of synthetic data was carefully
designed to evaluate the performances of these measures.
These measures were also validated on real data to exam-
ine the performances of different retinal image segmenta-
tion algorithms. From the results of all experiments, we
conclude that our proposed measure, F1, is the most suit-
able measure for retinal image segmentation. It provides
the greatest correlation to the desired measure behavior
and thus is the most suitable measure for studying the
performance of different retinal segmentation algorithms.
Since F1 is a binary image similarity measure, it can be
used as an evaluation tool for any image segmentation or
even edge detector methods where small localization error
is acceptable.
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