
A Blended Metric for Multi-label
Optimisation and Evaluation

Laurence A. F. Park1 and Jesse Read2

1 School of Computing, Engineering and Mathematics,
Western Sydney University, Australia.
lapark@scem.westernsydney.edu.au

2 DaSciM team, LIX Laboratory,
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Abstract. In multi-label classification, a large number of evaluation
metrics exist, for example Hamming loss, exact match, and Jaccard sim-
ilarity – but there are many more. In fact, there remains an apparent
uncertainty in the multi-label literature about which metrics should be
considered and when and how to optimise them. This has given rise to
a proliferation of metrics, with some papers carrying out empirical eval-
uations under 10 or more different metrics in order to analyse method
performance.
We argue that further understanding of underlying mechanisms is nec-
essary. In this paper we tackle the challenge of having a clearer view of
evaluation strategies. We present a blended loss function. This function
allows us to evaluate under the properties of several major loss func-
tions with a single parameterisation. Furthermore we demonstrate the
successful use of this metric as a surrogate loss for other metrics. We
offer experimental investigation and theoretical backing to demonstrate
that optimising this surrogate loss offers best results for several different
metrics than optimising the metrics directly. It simplifies and provides
insight to the task of evaluating multi-label prediction methodologies.

1 Introduction

The major challenge in multi-label classification is dealing with multiple output
labels simultaneously, which has important ramifications on building models, and
also evaluating them. There have been an impressive number of new methods
proposed in recent years, proposing different ways of modelling labels together,
but relatively little investigation into the study of which loss functions methods
optimise, which functions they should optimise, and how well they can be ex-
pected to achieve this for a given problem. As a result, empirical studies look at
up to a dozen evaluation metrics. Our study is targeted at bringing new clarity
and insight to this situation.

In multi-label classification, optimisation as part of a predictive model inher-
ently involves multiple dimensions; one for each label. A review of multi-label



classification is given in [11]. A number of common benchmark algorithms are
reviewed in [15] and [5]. Often, a vector is used to represent the labelling, e.g.,
yk = [yk1, yk2, . . . , ykL] where ykj = 1 iff the j-th of L labels is relevant to
the k-th example xk (and ykj = 0 otherwise). To evaluate the performance of a
multi-label classifier, typically predicted vectors yk must be compared the vector
of true labels tk over all examples k = 1, . . . ,K (for a test set of K examples).

Three of the most common similarity functions used in multi-label learning
and evaluation are the Jaccard index, Hamming loss, and 0/1 loss. Jaccard index
is known as accuracy in some publications, e.g., [3, 9], Hamming loss and 0/1 loss
are known often as Hamming score and exact match in their payoff-form (higher
is better), respectively [7]. However the basic principal of all multi-label metrics
is the same for any metric: provide a single number indicating the similarity
of the set (or vector3) of predicted labels compared to the set of true labels,
i.e., a score that may be normalised to between 0 and 1. We henceforth refer to
each of these mentioned metrics as a similarity or loss function, interchangeably.
There is a large number of multi-label criteria, including rankings and micro and
macro evaluation; a recent survey of multi-label metrics and unified view of them
is given by [14].

Consider the examples in Table 1. The similarity functions are defined, for
the k-th instance, as

Hamming :=
1

L

L∑
j=1

I[ykj = tkj ] (1)

Exact := I[yk = tk] (2)

Jacard :=
|yk ∧ tk|
|yk ∨ tk|

(3)

for L possible labels, where ∨ and ∧ are the logical OR and AND operations,
applied vector-wise, and I[·] is an indicator function returning 1 if the inner
condition holds (0 otherwise).

Each of these similarity functions measure different accuracy qualities of a
multi-label classification system. Hamming similarity provides the proportion
of labels predicted correctly, Exact similarity provides the proportion of label
sets predicted correctly, while Jaccard similarity only examines the proportion of
correctly predicted positive labels out of the potential positive set (predicted pos-
itive and actually positive). Therefore, a multi-label classification system should
be optimised according to the desired similarity function.

The problem of optimisation in multi-label classification is complicated by the
label dimension and the interdependence of labels. Resulting search spaces are
usually non-convex and non-differentiable, and all the difficulties of such a search
are inherited. A solution may fall into a local maximum/minimum and provide a
non-optimal solution. We can transform the problem into simpler problems which

3 Notation alternates among papers, since given a set of labels L, a (sub)set Y ⊆ L
can be represented as vector y = [y1, . . . , yL] where yj = 1⇔ yj ∈ Y



Table 1. An example of multi-label evaluation. The average Hamming, Exact, and
Jaccard similarity is 0.80, 0.40, and 0.67, respectively. Note that real-world multi-label
data sets are typically much sparser with respect to labelling.

tk yk Hamming Exact Jaccard

x1 [1 0 1 0] [1 0 0 1] 0.5 0 0.33
x2 [0 1 0 1] [0 1 0 1] 1 1 1
x3 [1 0 0 1] [1 0 0 1] 1 1 1
x4 [0 1 1 0] [0 1 0 0] 0.75 0 0.5
x5 [1 0 0 0] [1 0 0 1] 0.75 0 0.5

provide convex search spaces, but even in these case, optimisation is typically
much more difficult than a traditional single-label problem.

One solution is to optimise each label individually and independently. This
approach is known as Hamming similarity, and defines the so-called binary rel-
evance method, widely known across the multi-label literature as a baseline
approach. Indeed we see that Hamming similarity is proportional to the sum of
individual label similarities, therefore, when optimising for Hamming similarity,
we can simply optimise the accuracy of each label. An example of this is to model
each label with a logistic regression; resulting in L tasks of convex-optimisation.

However, it is typical to motivate methods that model labels together (e.g.,
[3, 8, 9, 15, 12] and many references therein). As shown thoroughly in those pa-
pers and many others, it is desirable to model an explicit or implicit dependence
among labels. And this, in turn, motivates the evaluation of labels together also.
Exact similarity does not decompose across labels (i.e., it requires optimisation
of all labels jointly) and therefore encourages modelling labels together. In fact,
for this metric it is theoretically optimal to model label combinations as single
class values in a large multi-class problem [2]. This transformation is often called
the label powerset method. Hence each vector/set yk is treated as a single value
that may be assigned to each instance. This can also be formulated as a differen-
tiable and convex optimization problem, such as multi-class logistic regression,
since the multiple classes can be modelled under a single softmax function. Nev-
ertheless, optimisation is still not expected to be easy or necessarily effective in
practice (see, e.g., [10, 12]): most label combination (class) are likely to be very
sparse or not present in the training data and the metric is particularly sensitive
to noise in the data, since even 1 of the L labels being incorrectly predicted will
lead to a 0 score for that particular instance. Other methods such as classifier
chains [9, 1] provide an alternative, which divides the optimisation across labels.
However, unlike the binary relevance method, the labels are linked together in
a chain cascade and thus can no longer be optimized separately (at least, not
in terms of optimising exact similarity), and thus becomes thus a non-convex
problem and remains a difficult task, hence paving the way for several exten-
sions (e.g., [8, 1, 2]) with approximate inference, and alternatives (e.g., [12, 10])
with exact inference on small sub-problems.



Jaccard similarity is also used for evaluating labels together. It is often pre-
ferred since it can be seen as a midpoint between Hamming and exact similarity
as two extremes. However, fewer theoretical results exist for its optimisation,
although relationships with F-measure has been outlined [13]. It remains popu-
lar, and it is typically assumed that good results in both Hamming and exact
similarity will reflect good results also in Jaccard similarity. Numerous empirical
studies also show this [8, 5].

Therefore, to summarise so far: Hamming similarity is easy to optimise, but
may not correspond to labellings that we would find desirable in real-world
problems. On the other hand, optimising a multi-label classification system with
respect to Jaccard or Exact similarity is difficult, since it requires optimisation of
all labels at once, leading to a large optimisation search space. Solutions involve:

– Problem transformation (i.e., binary relevance, or label powerset)

– Non-convex optimisation such as local search and hill-climbing methods

– Using a surrogate loss

– Smoothing and regularisation of the loss to improve results.

In this paper we propose a blended metric, combining Jaccard and Exact
similarity functions with the Hamming function as a surrogate metric for both
Jaccard and Exact similarity, providing a simpler search space and thus more
efficient and effective optimisation. Under a series of investigations we show the
benefit of this blended metric. In particular, we obtain a very important result:
best results for exact match can be obtained using our surrogate blended metric,
rather than the exact match minimizer (label powerset) itself. In general, we are
able to conclude making the recommendation of exploring different surrogate
metrics, rather than optimising separately across an ever-growing set of metrics.

Our novel contribution is covered as follows:

– In Section 2 we formulate our surrogate blended metric: a single function that
is a blend of the three similarity functions (Hamming, Exact, and Jaccard).

– In Section 3 we derive the gradient for optimisation of this function.

– In Section 4 and Section 5 we examine how optimisation over the blended
function affects the accuracy with regard to the maximisation of the three
similarity functions, on a number of real-world multi-label datasets; and we
identify the spectrum where each of the three similarity functions are max-
imised and we discuss in detail and draw conclusions and recommendations.

2 Multi-label Evaluation and Undetermined Predictions

To begin our investigation, we formulate the blended Hamming, Jaccard, Exact
similarity function and show that it behaves well when using undetermined label
values (such as votes or probabilistic predictions ∈ [0, 1] for each label).



2.1 A Blended Metric

Hamming and Jaccard similarity can be represented in terms of true/false posi-
tive/negative counts4:

Hamming =
TP + TN

L
Jaccard =

{
TP

TP+FP+FN if TN 6= L

1 otherwise

where TP + TN + FP + FN = L (the total number of labels). We also note
that exact similarity can also be represented in terms of Hamming and Jaccard
similarity.

Exact = lim
β→∞

Hammingβ = lim
β→∞

Jaccardβ

Of the three similarity functions, Hamming similarity is the simplest to optimise
over. Hamming similarity is the mean of the accuracy of each label prediction and
therefore, each label can be optimised individually (details in [2]). Both Jaccard
and Exact similarity depend on the collection of labels, so the optimisation is
non-decomposable.

We reason that a blending of Hamming similarity with either Jaccard or
Exact similarity provides a greater optimisation of Jaccard or Exact similarity.
The insight to this is that the Hamming optimisation search space is likely to be
less chaotic than the Jaccard and Exact optimisation search spaces, providing
a simpler optimisation path. On the other hand, this may lead to non-optimal
solutions. Therefore we will investigate this effect throughout the rest of this
paper.

We propose the blended Hamming, Jaccard similarity function:

s(y, t;α) =
TP + αTN

TP + FN + FP + αTN
(4)

=
TP + αTN

L− (1− α)TN
(5)

given the vector of true labels t, the vector of determined or undetermined pre-
dictions y, and a parameter α which controls the blending. This metric provides
Hamming similarity when α = 1 and Jaccard when α = 0. We additionally note
that this form avoids the divide-by-zero problem of the Jaccard similarity. By
taking the limit as α→ 0, the equation results in s(y, t;α→ 0) = TN/TN = 1,
when TP, FN and FP are zero.

2.2 Behaviour using undetermined labels

The blended similarity function is a function of true/false positive/negative
counts. Optimising over these functions is difficult due to the discrete nature

4 Throughout this work we refer to F-measure and Jaccard in an instance-wise eval-
uation context (noting that these metrics can also be used in a micro- or macro-
averaging context)



of these counts, which leads to a discontinuous optimisation function and a gra-
dient containing values of either zero of infinity.

Of course, many multi-label classifiers compute undetermined label values
zkj in the [0, 1] range, that are used to obtain the label predictions ykj ∈ {0, 1},
such that

ykj = I [zkj ≥ τj ] (6)

is the class prediction for the j-th label (I[·] = 1 if the inner condition holds),
where τj is some threshold, typically set to 0.5 but may also be tuned (see,
e.g., [4, 9]) either per label or the same for all labels j = 1, . . . , L. The vector
zk = [zk1, . . . , zkL] contains the undetermined label values and in many cases
zkj ≈ P (ykj = 1|xk) is related to probabilistic models or approximations5, or is
a normalised sum of ensemble votes (e.g., [12, 10, 1]).

Using these undetermined label values zkj to obtain undetermined true/false
positive/negative values, provides a continuous optimisation space, and a gra-
dient for gradient-based optimisation. For example, given the three labels yk =
[1 0 1] and the predicted undetermined label values zk = [0.6 0.4 0.2], the unde-
termined values would be rounded to obtain determined the values yk = [1 0 0],
giving TP = 1, FP = 0, FN = 1, TN = 1. Using the undetermined values
instead, we get TP = 0.8, FP = 0.4, FN = 1.2, TN = 0.6. For both cases
TP + TN + FP + FN = 3.

The undetermined values can also be used for evaluation, such as in the case of
the log loss metric (applied to multi-label evaluation in, e.g., [9]). Nevertheless,
such metrics are relatively less popular in the multi-label literature, perhaps
because not all classifiers can provide them. Nevertheless, they help considerably
in the optimisation to smooth out the search space.

2.3 Blending the Exact Similarity

TP and TN are dependent only on the correctness of the predictions (the cor-
rectly predicted 1 and 0 values), so we instead use the vector of correctness
values pk = [pk1, . . . , pkL], where pki (each element of pk) is equal to{

zki when tki = 1

1− zki when tki = 0
(7)

where tki is the true label. The combined Hamming-Jaccard score using unde-
termined labels can now be represented as

s(zk, tk;α) =
p>k ak

L+ p>k bk

where ak contains 1 when true label tki = 1 and α when true label is 0; and bk
contains 0 when the true label tki = 1 and α − 1 when the true label is 0. The
set of vectors ak and bk are constant for the optimisation.

5 Note, however, that metrics like F-measure and Jaccard measure cannot be optimised
only under consideration of marginal probabilities.



To include the Exact similarity into this spectrum, we add the parameter β

s(zk, tk;α, β) =

[
p>k ak

L+ p>k bk

]β
which is equivalent to Hamming similarity when α = 1, β = 1, and equivalent
to Jaccard similarity when α → 0, β = 1 and to Exact when β → ∞. A
continuous spectrum exists between the three similarity functions for α ∈ (0, 1]
and β ∈ [1,∞).

Given that we obtain the Exact similarity as β → ∞, let us look at how
α effects the rate at which the limit is approached, and if so which value of α
provides the fastest rate of convergence. Namely, if α is adjusted to α+ δ, where
δ > 0, the score changes to:

s(zk, tk;α+ δ, β) =

[
p>k ak + δ(1− tk)

L+ p>k bk + δ(1− tk)

]β
(8)

This value is bound between 0 and 1, so this addition of δ(1−tk) to the numerator
and denominator will increase the score. And, thus,

s(zk, tk;α, β) ≤ s(yk, tk;α+ δ, β)

for 0 ≤ α ≤ [α+δ] ≤ 1. The limit as β →∞ will approach the correct Exact score
faster when any score that is not 1, is closer to zero (since Exact requires that
all fractional scores should be mapped to zero). Since decreasing α decreases the
score, the limit will approach the correct score faster for smaller α. Therefore,
we expect that the best estimate of Exact will occur when α→ 0 and β →∞.

3 Optimising the combined metric

In this section, we present the linear model, the optimisation function used to
fit the linear model, a derivation of the optimisation gradient and inclusion of a
penalty to deter over-fitting.

3.1 Optimisation function

Suppose the linear model

log

(
zk

1− zk

)
= Wxk

with unknown matrix W , undetermined prediction vector zk ∈ (0, 1)
L

and fea-
ture vector xk ∈ RM . This model resembles a set of L parallel logistic regressions,
but unlike logistic regression, we are not determining the W that maximises the
likelihood of the data. We compute W that maximises the chosen evaluation



function score s(zk, tk;α, β) for all k. To optimise the average score, the optimi-
sation problem becomes:

max
W

1

K

K∑
k=1

s(zk, tk;α, β) (9)

where W is the weight matrix containing the elements wij , sk ∈ [0, 1) is the
score for each of the K objects.

s(zk, tk;α, β) = sk =

[ ∑L
i=1 pkiaki

L+
∑L
i=1 pkibki

]β
L is the number of labels, pki ∈ (0, 1) is the correctness of the undetermined
label prediction zki (recall Eq. (7))

pki = ztki

ki (1− zki)(1−tki)

and zki ∈ (0, 1) is the sigmoid of the mapped feature vector xk

zki =
1

1 + exp
(
−
∑
j wijxkj

)
where xkj is an element of the feature vector xk, and the element 1 is appended
to xk as a bias term. The constants aki ∈ {α, 1} and bki ∈ {0, 1 − α} depend
only on the optimisation parameter α and the true label values tki.

aki = tki + α(1− tki) bki = (α− 1)(1− tki)

α ∈ (0, 1] and β ∈ [1,∞) are parameters to set the desired optimisation (e.g.
α = 1, β = 1 for Hamming similarity). Also note that aki − bki = 1.

The optimisation of Eq. (9) provides us with W which we can use to make
determined predictions by

y = sign (Wxk)

where sign returns the L signs of the L elements in Wxk, making sure that 1 is
appended to x if it was used to compute a bias term during optimisation. Note
that the bias term has the same role as the threshold described in Section 2.2.

3.2 Metric gradient

We can optimise the similarity function using gradient descent or stochastic
gradient descent for large problems. To do so, we need the gradient of the function
with respect to each elements of the matrix W . The derivative of the sigmoid
function is

dzki
dwij

= xkjzki(1− zki)



The derivative of the correctness function is

dpki
dzki

= pki

[
tki
zki
− 1− tki

1− zki

]
and the derivative of the score function with respect to the correctness is

dsk
dpki

= βsk

[
aki∑L

i=1 pkiaki
− bki

L+
∑L
i=1 pkibki

]
Combining the partial derivatives provides the derivative of the score function
with respect to the unknown weights;

dsk
dwij

=
dsk
dpki

dpki
dzki

dzki
dwij

= βskpki(tki − zki)

[
aki∑L
i pkiaki

− bki

L+
∑L
i pkibki

]
xkj

(10)

Using gradient descent, we update weights W until the optimisation function
stops increasing,

wij ← wij + λ
dsk
dwij

where λ controls the rate of convergence.
Note that if α = 1 and β = 1 (giving Hamming similarity), we obtain aki = 1,

bki = 0 and sk =
∑L
i pki/L giving the gradient

dsk
dwij

=
pki(tki − zki)xkj

L

=

{
zki(1−zki)xkj

L if tki = 1
−zki(1−zki)xkj

L if tki = 0
=

(−1)1−tki

L

dzki
dwij

Thus we see that the gradient that optimises Hamming similarity with respect
to wij is independent of the weights for other values of i, meaning that each
label can be fitted independently.

3.3 Optimisation penalty

To reduce the chance of over-fitting the training data, we include a penalisation
term. Thus Eq. (9) becomes

max
W

1

K

K∑
k=1

s(zk, tk;α, β)− γ

2

∑
i=1

∑
j=1

w2
ij︸ ︷︷ ︸

penalty

for some positive γ, typically chosen via cross-validation. We make a correspond-
ing minor adjustment to the gradient, hence Eq. (10) becomes

dsk
dwij

= βskpki(tki − zki)

[
aki∑L
i pkiaki

− bki

L+
∑L
i pkibki

]
xkj − γwij



4 Parameter investigation

Having proposed a parametrisable blended metric, and derived its optimiser, we
now turn to explore the question: Does blending the Hamming similarity with
either Jaccard or Exact similarity provide a greater optimisation of Jaccard or
Exact similarity itself?

We answer this question by optimising the model over different data sets,
using different α, β parameter combinations and examining the results using the
three similarity functions.

Namely, we use the Emotions, Enron, Scene, Slashdot, Stare and Yeast multi-
label data sets6. Each of these data sets are commonly used for multi-label
machine learning except for Stare, which is a data set for detecting cardiovascular
disease from retinal features [6]. A 50/50 train/test split is used and the models
are optimised over the training portion. We experiment with values of α from
0.1 to 1 in increments of 0.1 and also α = 0.00001 to approximate the limit of α
approaching zero (α = 0 was not used to avoid the problems associated to the
Jaccard metric). We also experiment with eight values β ∈ {20, . . . , 27} (higher
values lead to approximately zero gradients), giving 88 α × β combinations.
The penalty parameter γ was computed using cross validation. Each of the 88
optimised models for each data set was evaluated using Hamming, Jaccard and
Exact similarity to examine the effect of the parameters on the evaluation scores.
The optimisation was performed using undetermined scores, but the evaluation
scores (shown in the figures) are computed using the final determined labels.
The results for the training data are shown in Figure 1, and the results for
the testing data are shown in Figure 2. The top six plots in each figure show
the Hamming similarity on each of the six data sets, the middle six show the
Jaccard similarity, and the bottom six show the Exact accuracy. The shade of
each block in a given plot shows the accuracy of the model optimised using the
set α, β parameters. For example, the first plot in Figure 1 shows the Hamming
similarity on the training portion of the Emotions data; the bottom row of the
plot shows the grey level transitioning from light to dark grey, meaning that
when β = 1 (log2 β = 0) the Hamming accuracy increases as α changes from 0
to 1.

5 Results and Discussion

The top sections of Figures 1 and 2 show the mean Hamming similarity between
the predicted and true label sets for the six data sets on the training and testing
portions. Each block in the figures show the effect of changing α and β on
the Hamming similarity. We would expect that the optimal configuration for
Hamming similarity is α = 1, β = 1 (the lower right corner of each block plot)
since it optimises Hamming similarity. We can see that this is the case for most of

6 All available from http://mulan.sourceforge.net/datasets-mlc.html, https://
sourceforge.net/projects/meka/files/Datasets/ (Slashdot), and http://www.

ces.clemson.edu/~ahoover/stare/ (Stare).
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Fig. 1. The Hamming (top section), Jaccard (middle section) and Exact (bottom sec-
tion) training similarity of the (top row from left to right in each section) Emotions,
Enron, Scene (bottom row from left to right in each section) Slashdot, Stare and Yeast
data, optimised using the shown values of α and β.
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Fig. 2. The Hamming (top section), Jaccard (middle section) and Exact (bottom sec-
tion) testing similarity of the (top row from left to right in each section) Emotions,
Enron, Scene (bottom row from left to right in each section) Slashdot, Stare and Yeast
data, optimised using the shown values of α and β.



Data Type α β Jaccard Base

Emotions
Train 0.3 1 0.580 0.580
Test 0.1 2 0.535 0.535

Stare
Train 1e-05 1 - 0.561
Test 0.1 16 0.505 0.501

Scene
Train 1e-05 1 - 0.720
Test 1e-05 1 - 0.643

Yeast
Train 1e-05 1 - 0.551
Test 1e-05 2 0.534 0.533

Slashdot
Train 1e-05 1 - 0.628
Test 1e-05 1 - 0.407

Enron
Train 1e-05 1 - 0.514
Test 1e-05 2 0.489 0.488

Table 2. The location (α, β) of the optimal Jaccard scores, and their Base score (α = 0,
β = 1). A dash means that the optimal score was located at the Base score position.

the data sets for both training and testing. For the remaining cases, we find that
the accuracy difference between the α = 1 and β = 1 and optimal configuration
is small (of the order of 0.01 or less).

The middle sections of Figures 1 and 2 show the Jaccard scores for each of
the training and testing data sets. The model optimises over Jaccard similarity
when α → 0 and β = 1. Therefore it is expected that the Jaccard scores are
optimal or close to optimal for precisely these values (bottom left corners of the
block plots).

The plots show that the Jaccard score is high in the lower left corner, but it
also remains high as both α and β increase (moving diagonally along the block
plot). Slashdot training is a notable exception, where the lower left corner seems
to be a “sweet spot”, obtaining an approximate 0.2 increase in Jaccard similarity
over the rest of the plot. We note that this is not as dramatic for the Slashdot
test data, but the lower left corner still provides a high Jaccard score relative to
the remaining configurations.

The lower sections of Figures 1 and 2 show the Exact match scores for each
of the training and testing sets. Exact similarity is being optimised when β →
∞ (the top of the plots). However, these plots show interesting and surprising
behaviour, with many of them being similar to the Jaccard plots. In other cases
there does not seem to be consistency in the optimal regions, which seems to be
located at about α = 0.5, with fluctuating values of β.

We now proceed to examine the difference in accuracy of the optimal α, β
configuration and expected α, β configuration. Tables 2, 3 and 4 contain these
details for the Jaccard, Hamming and Exact similarity functions.

Table 2 shows the Jaccard scores, where Base is the score for the expected
optimal configuration (α → 0, β = 1). We find that seven of the twelve data
sets provide the optimal score at the expected configuration, while the remaining
five provide a very slight increase (at most 0.004) over the Base score. Thus we



Data Type α β Hamming Base

Emotions
Train 1 2 0.827 0.823
Test 1 1 - 0.783

Stare
Train 0.6 4 0.946 0.944
Test 0.3 2 0.927 0.927

Scene
Train 0.7 4 0.916 0.912
Test 0.8 1 0.901 0.899

Yeast
Train 0.9 1 0.804 0.804
Test 1 2 0.799 0.798

Slashdot
Train 1e-05 1 0.968 0.959
Test 1e-05 1 0.954 0.953

Enron
Train 0.6 8 0.954 0.952
Test 1e-05 1 0.950 0.947

Table 3. The location (α, β) of the optimal Hamming scores, and their Base score
(α = 1, β = 1). A dash means that the optimal score was located at the Base score
position.

confirm that when evaluating using Jaccard similarity, we should optimise with
respect to Jaccard similarity.

Table 3 shows the Hamming scores, where Base is the score for the expected
optimal configuration (α = 1, β = 1). Similar conclusions can me made for Ham-
ming similarity: when evaluating using this metric, we should likewise optimise
using Hamming similarity; as expected.

Table 4 shows the Exact scores, where BaseH and BaseJ give the scores for
the expected optimal configuration (α = 1 or α → 0, β = 27). Only one of the
data sets provides the optimal score at the expected β = 27. We also find that
there are large differences between the optimal scores and the BaseH and BaseJ
scores. There are many values of small α (nine values ≤ 0.2). But it is clearly
seen that the selection of α and β for optimal Exact similarity is dependent on
the data.

Therefore, our findings may be summarised as the following recommenda-
tions: if optimising Hamming: use α = 1, β = 1; if Jaccard: use α → 0, β = 1;
and – we emphasise – for Exact similarity: we should in fact explore the α and β
space. This has important and far-reaching implications, since Exact similarity
is a widely used metric, and often used to promote novel classifiers because clas-
sifiers that model labels together are more likely to outperform the independent
baseline under this metric. With a more careful and exploratory optimisation
scheme as we define, we have showed how it is possible to achieve even higher
predictive performance.

5.1 Conclusions and Future Work

We have analysed multi-label evaluation, and outlined the difficulties in opti-
mising several of the well-known loss metrics. To tackle the issues that arise in



Data Type α β Exact BaseJ BaseH

Emotions
Train 1 4 0.348 0.296 0.296
Test 0.5 4 0.297 0.265 0.265

Stare
Train 0.1 8 0.500 0.470 0.490
Test 1e-05 4 0.439 0.427 0.427

Scene
Train 1e-05 2 0.624 0.526 0.532
Test 0.7 4 0.545 0.480 0.489

Yeast
Train 0.1 8 0.192 0.185 0.186
Test 0.2 16 0.194 0.191 0.190

Slashdot
Train 1e-05 1 0.553 0.351 0.351
Test 1e-05 1 0.360 0.300 0.301

Enron
Train 0.1 8 0.150 0.115 0.137
Test 0.2 128 0.239 0.205 0.229

Table 4. The location (α, β) of the optimal Exact scores, and their Jaccard Base score
BaseJ (α = 0, β = 128) and Hamming Base score BaseH (α = 1, β = 128).

multi-label optimisation, we proposed a surrogate loss, in the form of a blended
metric. This blended metric forms a smooth spectrum between the Hamming
and exact match metrics, where it falls depending on its parameterisation. Us-
ing particular parameterisations of this function, we show that optimisation is
more effective, on account of its smoothness. Indeed, for example we demon-
strated that one can obtain better results under exact match by optimising the
blended metric, than by optimising exact match directly (which is difficult to
do). This is important because exact match is a common metric in the literature
and many empirical evaluations are based around it. We also made a series of
other recommendations to multi-label researchers, in reflection of our findings.

To fully evaluate the potential of our proposal under a complete range of
contexts, further experimental comparison will be necessary, for example with
structured prediction like probabilistic classifier chains under different inference
algorithms, and structural SVMs. We cannot claim that our proposal optimises
in a Bayes optimal way, due to the approximation used; Further theoretical
analysis is needed on this front, particularly under exact similarity, Jaccard, and
F-measure. Finally, we can point out that with some modification, the blended
metric could be used to maximize F-measure – a promising line of future inves-
tigation.
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1. K. Dembczyński, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel clas-
sification via probabilistic classifier chains. In ICML ’10: 27th International Con-
ference on Machine Learning, pages 279–286, Haifa, Israel, June 2010. Omnipress.
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