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All-sky radio surveys are set to revolutionise the field with new discoveries. However, the vast
majority of the tens of millions of radio galaxies will not have the spectroscopic redshift measurements
required for a large number of science cases. Here, we evaluate techniques for estimating redshifts of
galaxies from a radio-selected survey. Using a radio-selected sample with broadband photometry at
infrared and optical wavelengths, we test the k-Nearest Neighbours (kNN) and Random Forest machine
learning algorithms, testing them both in their regression and classification modes. Further, we test
different distance metrics used by the kNN algorithm, including the standard Euclidean distance, the
Mahalanobis distance and a learned distance metric for both the regression mode (the Metric Learning
for Kernel Regression metric) and the classification mode (the Large Margin Nearest Neighbour metric).
We find that all regression-based modes fail on galaxies at a redshift z > 1. However, below this
range, the kNN algorithm using the Mahalanobis distance metric performs best, with an 7 15 outlier
rate of 5.85%. In the classification mode, the kNN algorithm using the Mahalanobis distance metric also
performs best, with an g 15 outlier rate of 5.85%, correctly placing 74% of galaxies in the top z > 1.02
bin. Finally, we also tested the effect of training in one field and applying the trained algorithm to
similar data from another field and found that variation across fields does not result in statistically
significant differences in predicted redshifts. Importantly, we find that while we may not be able to
predict a continuous value for high-redshift radio sources, we can identify the majority of them using
the classification modes of existing techniques.

Keywords:

Methods: Analytical
Techniques: Photometric
Galaxies: Photometry
Galaxies: High-redshift

© 2022 Elsevier B.V. All rights reserved.

1. Introduction Digital Sky Survey (SDSS) has measured ~4.8 million spectro-

scopic redshifts — as of the 16th data release — (Ahumada

New radio telescopes are set to revolutionise the radio astron-
omy regime, with the Evolutionary Map of the Universe (EMU)
project to be completed on the Australian Square Kilometre Array
Pathfinder (ASKAP; Johnston et al.,, 2007, 2008) telescope in
particular set to increase the number of known radio sources from
~2.5 million (Norris, 2017) to ~70 million (Norris et al., 2011).

For most aspects of science, knowledge of an astronomical
source’s redshift is an essential indicator of the distance and age
of the source. Ideally, this redshift is measured directly using
spectroscopy. However, even with modern advances — including
Multi-Object Spectroscopy (MOS) which can allow hundreds to
thousands of redshifts to be measured at once — deep spectro-
scopic surveys still fail to yield reliable redshifts from 30%-60%
of measured spectra (Newman et al., 2015). Currently, the Sloan
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et al., 2020)" and the 2dF Galaxy Redshift Survey (2dfGRS; Lewis
et al,, 2002) measured ~250000 spectroscopic redshifts over its
5 year project. In the future, the Wide Area Vista Extragalactic
Survey (WAVES) survey — expected to provide a further 2.5 mil-
lion spectroscopic redshift measurements (Driver et al., 2016) —
will increase the number of spectroscopically measured sources.
However, this will still be significantly short of the expected ~70
million sources detected by the EMU project (even if all of these
newly measured galaxies were exclusively selected from the EMU
survey).

Photometric template fitting (Baum, 1957) is able to estimate
the redshift (hereafter zpoo) Of a source, as well as ancillary
data like galaxy classification. Photometric template fitting is
completed by comparing the Spectral Energy Distribution (SED),
measured across as many different wavelengths as possible, to

1 https://www.sdss.org/dr16/scope/.
2 http://www.2dfgrs.net/Public/Survey/statusfinal.html.
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Fig. 1. The SED of an extragalactic source from the COSMOS survey (Object ID: 358521). The background shows the filter coverage of the 31 filters available in the
COSMOS field (defined in Ilbert et al. (2009)). The “+” symbols in the foreground represent the galaxy’s photometric measurements in each band, and are coloured

to match the corresponding filter in the background.

templates constructed with astrophysical knowledge, or prior
examples. Fig. 1 shows the 31 filter bands available in the COS-
Mic evOlution Survey (COSMOS) field and an example SED used
by Ilbert et al. (2009) to achieve redshift accuracies of 4, /(142) =
0.012.

Machine Learning (ML) has also been applied to the problem,
with the k-Nearest Neighbours (kNN) algorithm (Ball et al., 2007,
2008; Oyaizu et al., 2008; Zhang et al., 2013; Kiigler et al., 2015;
Cavuoti et al., 2017; Luken et al., 2019, 2021), Random Forest (RF;
Cavuoti et al., 2012, 2015; Hoyle, 2016; Sadeh et al., 2016; Cavuoti
et al,, 2017; Pasquet-Itam and Pasquet, 2018), and neural net-
works (Firth et al., 2003; Tagliaferri et al., 2003; Collister and
Lahav, 2004; Brodwin et al., 2006; Oyaizu et al., 2008; Hoyle,
2016; Sadeh et al., 2016; Curran, 2020; Curran et al., 2021) being
among the more widely used algorithms. Some recent studies
utilise Gaussian Process (GP; Duncan et al., 2018a,b; Duncan
et al,, 2021), and deep learning using the original images at
different wavelengths, as opposed to the photometry extracted
from the image (D’Isanto and Polsterer, 2018).

However, few of these solutions are appropriate for the large-
scale radio surveys being conducted. While photometric template
fitting provides a theoretically ideal solution, the quality of data
required to make it highly accurate will not be available for the
majority of sources in the all-sky EMU survey, since only all-sky
photometric data will be available for most sources. An example
of the broadband photometry used by this work is shown in Fig. 2,
which shows both a likely Active Galactic Nucleus (AGN; top), and
Star Forming Galaxy (SFG; bottom).

Additionally, Norris et al. (2019) have shown that photomet-
ric template fitting performs poorly on radio-selected datasets
(which are typically dominated by AGN), possibly because the
majority of templates are unable to differentiate between emis-
sion from the AGN and emission from the galaxy itself (Salvato
et al,, 2018).

The ML based methods have mainly focused on optically-
selected datasets, with most work drawing on the SDSS photo-
metric and spectroscopic samples, often restricting the redshift
range to z < 1, or using datasets containing only one type
of object — e.g. the SDSS Galaxy or Quasi-Stellar Object (QSO)

catalogs. While this kind of testing is entirely appropriate for
non-radio selected samples, Norris et al. (2019) have shown that
assumptions in the optical regime may not be valid in the radio
regime, for two reasons. First, the redshift distribution of radio-
selected sources is quite different from that of optically-selected
sources, as shown in Fig. 3. Second, radio-selected sources are
often dominated by a radio-loud AGN which is poorly represented
in optically-selected templates and training sets.

Finally, we should note that in support of the science goals of
the EMU Project, we aim to minimise the number of estimations
that catastrophically fail, rather than minimise for accuracy as
most other works do.

The overall contributions of this study include:

e An in-depth study of the simple k-Nearest Neighbours algo-
rithm, including the investigation of typically ignored dis-
tance metrics for the estimation of radio galaxy redshift;

e A comparison with the widely used Random Forest algo-
rithm;

e An analysis of whether similarly observed fields can be used
as training samples for alternate fields;

e An exploration into the effectiveness of regression vs classi-
fication modes in estimating high redshift galaxies, given the
highly unbalanced nature of the training sample (noting that
while classification modes might be able to identify high-
redshift galaxies, it will not be able to estimate its actual
redshift).

1.1. Formal problem statement

In this article, we investigate the problem of modelling the
redshift of a source with respect to known measurements of the
source. This can be a regression problem, where we attempt to
model the function r; = f(X;), such that the redshift of source i,
r; € RT and X; the known measurements of source i are obtained
from a catalogue with various domains. We can also model the
redshift of a source as ¢; = g(X;), where ¢; is a class representing
a specific domain of redshift. In the following section we describe
the catalogues containing the known source information x; and
the variables that are used for this representation.
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Fig. 2. The SED of the extragalactic source ATLAS3_]J033551.0283345C (top; likely AGN) and ATLAS3_]J033519.0273708C (bottom; likely SFG), in similar style to Fig. 1.
The background shows the filter coverage used by this work, with the “+” in the foreground representing the measured photometry at each band, taken from the

data used in this study.

2. Data

This work uses data from the Australia Telescope Large Area
Survey (ATLAS; Norris et al., 2006; Franzen et al., 2015) radio con-
tinuum catalogue, providing a 1.4 GHz flux density measurement
of 4780 unique sources. The ATLAS survey covers two regions
of the sky — the extended Chandra Deep Field South (eCDFS)
and the European Large Area ISO Survey-South 1 (ELAIS-S1),
both to a depth of ~15 ]y, and was completed as a first-look
at what the EMU survey may provide. This survey was cross-
matched by Swan (2018) with the Australian Dark Energy Sur-
vey (0OzDES; Yuan et al., 2015; Childress et al., 2017; Lidman et al.,
2020), Dark Energy Survey (DES; Dark Energy Survey Collabo-
ration et al., 2016) and Spitzer Wide-Area Infrared Extragalactic
Survey (SWIRE; Lonsdale et al., 2003) surveys, providing spectro-
scopic redshift measurements, g, r, i and z optical magnitudes, and
3.6, 4.5, 5.4 and 8.0 um infrared flux measurements respectively.

This work used only those ATLAS sources with measured
photometry in all provided optical and infrared bands, creating a
final dataset containing 1311 sources with complete photometric

coverage. Specifically, in both fields used in this work, we used
the g, r, i and z optical magnitudes from DES, and 3.6, 4.5, 5.4
and 8.0 wm infrared flux measurements from the SWIRE survey,
as shown in Fig. 4. The redshift distribution of the final collated
dataset is presented in Fig. 5.

To prevent the different methods tested from being dominated
by single features with wide variation, all features were standard-
ised using Eq. (1), setting the feature mean to 0, and the feature
variance to unit variance.

Xi — X

zi = , (N
Sx

where x is the mean of the sample of variable x and s, is its
standard deviation.

During testing, we also examined the use of “colours” rather
than optical magnitudes, and taking the log of the radio and
infrared fluxes to better distribute the data. Colours are typi-
cally used instead of magnitudes to remove the brightness- and
redshift-dependent nature of magnitudes, replacing them by the
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Fig. 3. The normalised distributions of redshift in the SDSS Galaxy and QSO
surveys, compared with the expected redshift distribution of the EMU survey,
modelled by the Square Kilometre Array Design Survey (SKADS; Levrier et al.,
2009).

Optical

Redshift
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Fig. 4. A Venn diagram of the number of radio sources in the ATLAS dataset,
with a spectroscopic redshift (provided by the OzDES), optical magnitudes at g,
r, i, and z bands (provided by the DES) and infrared fluxes at 3.6, 4.5, 5.8 and
8.0 wm (provided by the SWIRE survey).

difference between the magnitudes that is dependent only on the
SED.

2.1. Data partitioning

All machine learning methods require the main dataset to be
partitioned into multiple subsets, with the subsets set aside for
training the model, validating hyperparameters, and testing the
model. In this work, we split our data into two datasets — training
and testing, with the hyper-parameters being validated using k-
fold cross validation on the training set. We partition our data
differently for the three tests we complete:

e Typical random split, with 70% of the data split off as the
training set, leaving the remaining 30% as the test set.

e The entire ELAIS-S1 field as the training set, leaving the
eCDFsS field as the test set.

e The entire eCDFS field as the training set, leaving the
ELAIS-S1 field as the test set.

In addition to the above partitioning, in order to facilitate the use
of the classification modes of our algorithms tested, we quantise
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Fig. 5. The redshift distribution of sources in the ATLAS dataset, broken down
by field (ELAIS-S1 and eCDFS). The overall mean redshift is z = 0.47, ELAIS-S1
mean is z = 0.51 and eCDFS mean is z = 0.44.

Table 1

Details of the bins used for the classifications tests, outlining the lower edge,
upper edge and predicted value of each bin (where the predicted value is the
median of the spectroscopic redshifts from within the bin).

Bin Lower Upper Median
number bound bound value
1 0 0.10 <0.1
2 0.10 0.15 0.12

3 0.15 0.19 0.17

4 0.19 0.22 0.21

5 0.22 0.26 0.24
6 0.26 0.29 0.27

7 0.29 0.32 0.31

8 0.32 0.35 0.34

9 0.35 0.41 0.38
10 0.41 0.50 0.46
11 0.50 0.58 0.54
12 0.58 0.66 0.62
13 0.66 0.80 0.73
14 0.80 1.02 091
15 1.02 4.33 >1.02

the redshift values into 15 redshift bins (defined in Table 1), with
equal numbers of sources in each in order to be able to predict
a uniform distribution with using a matching distribution. The
median of the spectroscopic redshifts within the bin is chosen as
the redshift to predict.

3. Methods
3.1. kNN

The kNN algorithm (Cover and Hart, 1967) computes a simi-
larity matrix between all sources based on the catalogue’s pho-
tometric measurements, and a given distance metric (the set of
distance metrics tested in this work are explained in Sections
3.1.1, 3.1.2, and 3.1.3). Once the similarity matrix is constructed,
the kNN algorithm finds the k (Hereafter ky) most similar sources
with measured redshifts (where ky is optimised using cross val-
idation), and takes either the mean value (for regression) or the
mode class (for classification) of the sources as the estimated red-
shift for each source. A simple illustration of the kNN algorithm
is shown in Fig. 6

The value of ky used in the KNN in this work is optimised using
k-fold (where k is hereafter k; and is set to 10 for this work) cross-
validation. k¢-fold cross-validation randomly splits the data into
ks roughly even groups, iterating through using k; — 1 groups as
the training set and validating on the remaining group, until every
group has been used in testing, with the average error used as the
error for that value of k;. This work tested all integer values of ky
for the kNN algorithm between 2 and 20 (ky € {2, ..., 20}).



KJ. Luken, R.P. Norris, LA.F. Park et al.

1.0
A Unknown Class
Class 1
___________ e Class 2
0.8 ° /,/" \\\
[ ) .
0.6
0.41 /
0.2 °
i °
0.0 . i . ‘
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 6. A pictorial representation of the k-Nearest Neighbours algorithm. If ky
is chosen to be 5 (denoted by the solid circle), by taking the mode of the ky
nearest neighbours, the red triangle would be assigned a class of Green Square.
If the value of ky was changed to 7 (denoted by the dashed circle), the mode
of the ky nearest neighbours would be the Blue Circle.

Source: Modified from: Ajanki (2007).

The kNN algorithm requires a metric to determine which of
the observations are neighbours to a given observation. In the
next sections we present the set of metrics investigated in the
experiment.

3.1.1. Euclidean distance
Euclidean Distance is the simplest, and most widely used
distance metric in literature, defined in Eq. (2):

d(p. q) = v — 9" — 9. (2)
where d(p, q) is the Euclidean distance between two feature

vectors p and §. In this case the vectors contain the measured
photometry of two galaxies.

3.1.2. Mahalanobis distance

The Mahalanobis distance metric (Mahalanobis, 1936) nor-
malises the variance and covariance of the input features by
transforming the features using the inverse of the covariance ma-
trix. For uncorrelated input features, the Mahalanobis distance is
equal to the scaled Euclidean distance, but for correlated features,
it generalises the idea of Euclidean distance to take account of the
covariance. The Mahalanobis distance is defined in Eq. (3):

dp.q)=v{®—@'S~'(p - q). (3)

where d(p, q) is the Mahalanobis distance between two feature
vectors p and ¢, and S is the covariance matrix.

3.1.3. Learned distance metrics

Conceptually, for best results the distance metric used should
take into consideration the shape and structure of the data. To-
wards this end, we can generalise Eqgs. (2) and (3) to Eq. (4),
noting that the M matrix can be any positive semi-definite matrix.
The Identity matrix is used for Euclidean Distance, and the S™!
matrix is used in the Mahalanobis. We can, however, go one step
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further, and attempt to learn an M matrix that can better warp
the feature space so that observations with similar redshift are
measured as close, while observations with different redshift are
measured as distant.

d(B, q) = v(p — @)™(p — q), (4)
where d(p, q) is the distance between two feature vectors p and
q.

For our regression tests, we used the Metric Learning for
Kernel Regression (MLKR) distance metric, which performs a su-
pervised Principle Component Analysis (Weinberger and Tesauro,

2007). The MLKR distance metric begins by decomposing the M
matrix from Eq. (4) using Eq. (5):

M=ATA (5)

Using Egs. (5), (4) can be expressed as the modified Euclidean
Distance metric in Eq. (6):

J

d(%i, X)) = AR — X)) (6)
Matrix A is optimised using Gradient Descent, using Eq. (7):

L R N .-

S =dA Z()’i — ) Y — vk, (7)

where J; is defined in Eq. (8), k; is a Gaussian kernel defined
in Eq. (9), and X; = (y; — J1)%.

o 2yziYiki
Vi=<=—— (8)
Zj;&k kij
1 &%)
kij = 72]-[6 o2 (9)
o

The loss function being minimised is a simple squared differ-
ence, defined in Eq. (10):

L= -y (10)

For our Classification tests, the Large Margin Nearest Neigh-
bour (LMNN; Weinberger et al., 2006) learned distance metric
was used. The LMNN distance metric finds a transformation for
the data that maximises the distance between different classes,
and minimises the distance between similar classes. The loss
function the LMNN algorithm optimises is defined in Eq. (11):

L) =)yl — %)
ij

ijl
IL(x; — X;)I|°—
LR — X111,

where i, j, and [ are individual galaxy feature vectors, n; € {0, 1}
describes whether X; is a target of 7<]-, c is a positive constant
typically chosen through cross-validation and [z], = max(z, 0)
— a hinge function.

An example of the transformation the LMNN algorithm at-
tempts is in Fig. 7, using three neighbours.

3.2. Random Forest

For comparison, we have contrasted our results with the pop-
ular and well-used RF algorithm. RFs are constructed from boot-
strapped Decision Trees (DTs) — an algorithm that partitions the
data space so that it can be explored using a tree, shown in
Fig. 8 (Morgan and Sonquist, 1963; Quinlan, 1987). Each DT finds
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Fig. 7. An example of the transformation found by the Large Margin Nearest
Neighbour algorithm. The distance between similar classes is minimised, and
the distance between different classes is maximised.

I171< /§>X1

Fig. 8. An example of a Decision Tree. Starting at the top with the entire dataset,
questions are asked of the data until an outcome is clearly identified.

the impurity at each node (defined in Eq. (12
best features and values to split the data on:

)) to determine the

nleft

G(Q,0) = ”g’” H(Quight (6)), (12)

H(Qzeft )+ ——

where Q is the data at node m, 0 is a subset of data, N,, is the
number of objects at node m, npp and nyg, are the numbers of
objects on the left and right sides of the split, Qe and Qg are
the objects on the left and right sides of the split, and the H func-
tion is an impurity function that differs between classification and
regression. For Regression, the Mean Square Error is used (defined
in Eq. (13)), whereas Classification often uses the Gini Impurity
(defined in Eq. (14)).

H(Xn) = Ni > - Zy, : (13)

ieNm ™ jeNm

where N, is the number of objects at node m and y; and y; are
the response variables.

Z pmk pmk (14)

where p, is the proportion of split m that are class k, defined
formally in Eq. (15):

1
Pme= - D 10 =), (15)

m
Xi€Rm
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where [ is the indicator function, identifying the correct classifi-
cations.

3.3. Error metrics

In order to evaluate each of the machine learning models, the
prediction error of each model will be assessed. In this section,
the set of statistics that measure the error of the models are
presented. The primary error metric compared in this work is the
no.15 outlier rate, defined in Eq. (16):
count(|Az| > 0.15 x (1 + Zspec))

Number Of Sources
where Az = Zgec — Zphoto- The 19 15 outlier rate is a percentage
representing the number of ‘catastrophic failures’ (the percentage
of galaxies that have a residual greater than 0.15, scaled with
redshift), and is commonly found in literature (Ilbert et al., 2009;
Salvato et al., 2009, 2011; Cavuoti et al., 2012; Zitlau et al., 2016;
Cavuoti et al., 2017; Jones and Singal, 2017; Mountrichas et al.,
2017; Luken et al., 2019; Norris et al., 2019).

We also provide a secondary 7,, outlier rate in order to
provide a statistically sound comparison, defined in Eq. (17):

No.15 = (16)

count(|Az| > 20)

- = 100, 17
T2 Number Of Sources % an

where Az = Zypec — Zphoto, and o is the standard deviation of the
estimated response, defined in Eq. (18):

1 N
= /N g(y,-—y)z, (18)

where N is the number of observations, y; is an observation, and
yi is the estimated observation.

As this work is presenting both regression and classification
modes of the given algorithms, there are some error metrics that
suit regression, and some that suit classification. These metrics
are defined in Sections 3.3.1 and 3.3.2 respectively.

3.3.1. Regression error metrics

For the regression tests, three additional error metrics were
compared. The first is the Normalised Median Absolute Devia-
tion (NMAD). The NMAD is a similar measure to the standard
deviation, and is generally used for non-Gaussian distributions. It
is more robust than the standard deviation, as it takes the median
of the residuals, improving the resilience to outliers — an issue
that can be prominent in redshift estimation due to the highly
unbalanced datasets used, and is defined in Eq. (19):

median(X)|), (19)

where NMAD is the Normalised Median Absolute Deviation, X is
a vector of residuals from which X; is taken.

The R? Coefficient of Determination is the second regression-
based error metric, and is the proportion of variance explained by
the model, The R? is defined in Eq. (20):

Yy =)
2 —y)?
where y; is a response variable, y is the corresponding estimated
response, and y is the mean of the response variables.

Finally, the Mean Square Error (MSE) is a direct measure of the

error produced by the model, with the lower the value the better,
and is defined in Eq. (21):

ONMAD — 1.4826 x median( |X, —

RP=1- , (20)

N
1 X
MSE = _Z]j(yi -9, (21)
1=

where N is the number of observations, y; is the measured re-
sponse, and y; is the estimated response.
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3.3.2. Classification error metrics

Traditionally in ML classification settings, the Accuracy (de-
fined in Eq. (22)), Precision, Recall and F1 score are reported.
We also investigated the Normalised Mutual Information, which
suggests how dependent one set of data is upon another. We do
not report the Precision, Recall, F1 Score and Normalised Mutual
Information, however, as we found they provided no additional
information.

It is important to note that the main error metric being com-
pared and minimised in both the regression and classification
tests is the 1g.15 outlier rate. As this outlier rate is explicitly
accepting of a level of inaccuracy that scales with redshift, there is
an inherent acceptance of some level of leakage between neigh-
bouring classes during classification tests.

This acceptance of leakage means that models may present
with high error rates due to rigid correct/incorrect classifications,
and yet may still be acceptable models for this process.

n—1

N 1 N
Accuracy(y, ) = - Zl(yi =Yi)s (22)

i=0

where y is the measured response, y is the predicted response, n is
the number of samples, and I is an indicator function, indicating
the cases where the predicted response matched the measured
response.

3.4. Statistical significance

Analysis of Variance (ANOVA) tests were used in this study to
test for statistical significance. This allows us to test whether the
changes in model correlate to a statistically significant change in
estimated redshift, by testing to see if the means of two or more
populations (in this case, experiments with different models)
differ.

In all cases, the tests were run in a one-vs-many scenario,
with the one being tested as our best performing metric in order
to determine whether our best performing result is statistically
significant.

3.5. Software

This work makes use of the Scikit-learn® Python package (Pe-
dregosa et al.,, 2011) for the implementation of the RF and kNN
algorithms, as well as the Euclidean and Mahalanobis distance
metrics. We made use of the PyLMNN* package for the LMNN
distance metric, and the metric-learn® package for the MLKR
distance metric. The code and data used in this work is available
on Github.®

4. Results

Given the number of different algorithms, distance metrics and
datasets tested in this work, we have assigned each combination
a Test ID, defined in Table 2 for Regression-based tests, and
Table 3 for Classification-based tests. Each test ID is made up of
4 characters, with the first character (R/C) representing whether
the test is a regression- or classification-based test, the 2nd and
3rd characters (Eu/Ma/ML/Rf) representing the method used for
estimation (Euclidean distance, Malanobis distance, a Learned
distance metric, or Random Forest), and the final character (1/2/3)

3 https://scikit-learn.org/.

4 https://pypi.org/project/PyLMNN/.

5 http://contrib.scikit-learn.org/metric-learn/generated/metric_learn.MLKR.
html.

6 https://github.com/kluken/Redshift-kNN-2021.
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Table 2

Description of the regression based tests conducted. The Test ID is used to
reference the results in Table 4. The Method is the ML algorithm used in the
test. The Distance Metric is the distance metric used in the kNN algorithm (and
hence is empty for the RF algorithm). The Training Set is the method of choosing
the training set for the ML algorithm.

Test ID Method Distance Metric Training Set
REu1 kNN Euclidean Random
REu2 kNN Euclidean ELAIS-S1
REu3 kNN Euclidean eCDFS
RMa1 kNN Mahalanobis Random
RMa2 kNN Mahalanobis ELAIS-S1
RMa3 kNN Mahalanobis eCDFS
RML1 kNN MLKR Random
RML2 kNN MLKR ELAIS-S1
RML3 kNN MLKR eCDFS
RRf1 RF - Random
RRf2 RF - ELAIS-S1
RRf3 RF - eCDFS
Table 3

Description of the classification based tests conducted. The Test ID is used to
reference the results in Table 5. The Method is the ML algorithm used in the
test. The Distance Metric is the distance metric used in the kNN algorithm (and
hence is empty for the RF algorithm). The Training Set is the method of choosing
the training set for the ML algorithm.

Test ID Method Distance Metric Training Set
CEul kNN Euclidean Random
CEu2 kNN Euclidean ELAIS-S1
CEu3 kNN Euclidean eCDFS
CMa1l kNN Mahalanobis Random
CMa2 kNN Mahalanobis ELAIS-S1
CMa3 kNN Mahalanobis eCDFS
CML1 kNN LMNN Random
CML2 kNN LMNN ELAIS-S1
CML3 kNN LMNN eCDFS
CRf1 RF - Random
CRf2 RF - ELAIS-S1
CRf3 RF - eCDFS

representing the training set used (1 = Random, 2 = ELAIS-S1,
3 = eCDFS).

As discussed in Section 2, we tested both statistical standardi-
sation of input photometry, compared with the use of astrophys-
ically derived “colours”, and taking the log of radio and infrared
data to better distribute the data. In both cases, however, the
result was very similar to the standardised dataset, and hence is
the only value quoted.

4.1. Regression

Based on the Regression tests outlined in Table 2, we present
the results in a series of plots (Figs. 9-12).

In each plot three subfigures are presented, with Subfigure A
representing the random training set, Subfigure B representing
the training set built using galaxies from the ELAIS-S1 field, and
Subfigure C representing the training set built using galaxies from
the eCDEFS field. The subfigures are split into two plots — the
top plot showing the measured spectroscopic redshift (x-axis)
compared with the predicted redshift (y-axis), with a perfect 1:1
correlation (red dashed line) and the 7 15 outlier rate boundaries
(blue dashed lines) shown. The bottom plot shows the measured
spectroscopic redshift (x-axis) against the residuals, again with
the perfect 1:1 correlation (red dashed line) and the 7 15 outlier
rate boundaries (blue dashed lines) shown.

These results are summarised in Table 4.

We show that the lowest 715 outlier rate is achieved using
the kNN algorithm paired with the Mahalanobis distance metric,
and is statistically different from most other algorithms (kNN
using Euclidean Distance: p value = 0.0183, and the RF algorithm:


https://scikit-learn.org/
https://pypi.org/project/PyLMNN/
http://contrib.scikit-learn.org/metric-learn/generated/metric_learn.MLKR.html
http://contrib.scikit-learn.org/metric-learn/generated/metric_learn.MLKR.html
https://github.com/kluken/Redshift-kNN-2021
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Fig. 9. Figures showing the results using the kNN regression algorithm using Euclidean distance as the Distance metric, varying the data used for training (with
the numbers corresponding to the Test ID in Table 2). (REul — Left) uses a random training sample, (REu2 — centre) uses the ELAIS-S1 field as the training set,
and (REu3 — right) uses the eCDFS field as the training set. The x-axes show the measured spectroscopic redshift. The top-panel y-axes show the predicted redshift
using the given model. The bottom-panel y-axes show the normalised residuals. The red-dashed line shows a perfect 1:1 prediction, and the blue-dashed lines show

the decision boundaries based on the 75 outlier rates.
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Fig. 10. Figures showing the results using the kNN regression algorithm using Mahalanobis distance as the Distance metric, varying the data used for training (with
the numbers corresponding to the Test ID in Table 2). (RMa1l — Left) uses a random training sample, (RMa2 — centre) uses the ELAIS-S1 field as the training set,
and (RMa3 — right) uses the eCDFS field as the training set. The x-axes show the measured spectroscopic redshift. The top-panel y-axes show the predicted redshift
using the given model. The bottom-panel y-axes show the normalised residuals. The red-dashed line shows a perfect 1:1 prediction, and the blue-dashed lines show

the decision boundaries based on the 715 outlier rates.

p value = 0.0183 compared with kNN using the Mahalanobis
distance metric as a baseline). The kNN algorithm using the MLKR
distance metric (a Mahalanobis-like distance metric) is not sta-
tistically significantly different (p value = 0.5750). However, all
results (including the RF algorithm) suffer from the same issues
of under-predicting high redshift (z > 1) galaxies.

The randomly selected training sets typically achieve lower
10.15 outlier rates than the training sets built using one field only,
however, neither field-based training set provides consistently

better 7g.15 outlier rates than the other. This is confirmed statisti-
cally, with no statistically significant result measured (p value =
0.2072).

4.2. Classification
Based on the Classification tests outlined in Table 3, we show

the classification-based results for the kNN algorithm — using Eu-
clidean distance (Fig. 14), Mahalanobis distance (Fig. 15) and the
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Fig. 11. Figures showing the results using the kNN regression algorithm using MLKR distance as the Distance metric, varying the data used for training (with the
numbers corresponding to the Test ID in Table 2). (RML1 — Left) uses a random training sample, (RML2 — centre) uses the ELAIS-S1 field as the training set, and
(RML3 — right) uses the eCDFS field as the training set. The x-axes show the measured spectroscopic redshift. The top-panel y-axes show the predicted redshift
using the given model. The bottom-panel y-axes show the normalised residuals. The red-dashed line shows a perfect 1:1 prediction, and the blue-dashed lines show

the decision boundaries based on the 75 outlier rates.
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Fig. 12. Figures showing the results using the RF regression algorithm, varying the data used for training (with the numbers corresponding to the Test ID in Table 2).
(RRf1 — Left) uses a random training sample, (RRf2 — centre) uses the ELAIS-S1 field as the training set, and (RRf3 — right) uses the eCDFS field as the training set.
The x-axes show the measured spectroscopic redshift. The top-panel y-axes show the predicted redshift using the given model. The bottom-panel y-axes show the
normalised residuals. The red-dashed line shows a perfect 1:1 prediction, and the blue-dashed lines show the decision boundaries based on the 1 15 outlier rates.

LMNN learned distance metric (Fig. 16) — and the RF algorithm
(Fig. 17), summarised in Table 5.

We present our classification-based results using scaled con-
fusion matrices, where the x-axis shows the measured spectro-
scopic redshift, the y-axis shows the predicted redshift, the colour
shows the density of the objects in that chosen bin, and the
width of each bin is proportional to the range of redshift values
represented by the bin. An example scatter plot (in the same
style as Fig. 9), demonstrating the effect of binning on the classi-
fication results when compared against the original spectroscopic
measurements is shown in Fig. 13.

The kNN algorithm paired with the Mahalanobis distance met-
ric provides the lowest ng15 and 1y, outlier rates, as well as
performing the best in terms of traditional ML classification met-
rics (accuracy, precision, recall and F1 score). However, while
the results using the Mahalanobis distance metric are statisti-
cally significantly better than those using the Euclidean distance
metric (p = 0.00619), they are not statistically different from
the LMNN learned distance metric (a Mahalanobis-like distance
metric; p = 0.4276), or the RF algorithm (p = 0.8913). Again,
we note that for most algorithms, the highest redshift galaxies
remain a problem for estimation, however, the results can change
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Table 4
Results using the regression based algorithms. The Test column relates to the
tests defined in Table 2. The best result for each metric is highlighted in bold.

Test ki 10.15 N20 R? MSE 4 ONMAD
Trees (%) (%) Value
REu1 5 8.14 6.61 0.65 0.06 0.10 0.05
REu2 5 8.70 5.51 0.60 0.06 0.12 0.06
REu3 11 8.28 4.85 0.53 0.09 0.12 0.06
RMa1 5 5.85 5.09 0.59 0.07 0.12 0.03
RMa2 3 8.70 5.39 0.58 0.07 0.15 0.04
RMa3 5 7.68 5.45 0.54 0.09 0.13 0.04
RML1 4 6.36 4.07 0.73 0.05 0.10 0.05
RML2 9 8.58 478 0.68 0.05 0.11 0.06
RML3 5 10.91 4.44 0.58 0.08 0.13 0.05
RRf1 44 8.14 4.84 0.59 0.07 0.13 0.05
RRf2 21 12.75 5.88 0.32 0.11 0.19 0.06
RRf3 23 10.71 4.65 0.54 0.09 0.14 0.06
Table 5

Results using the classification based algorithms. The Test column relates to the
tests defined in Table 3. The best result for each metric is highlighted in bold.

Test k/ N0.15 N20o Acc g
Trees (%) (%)

CEu1l 6 891 4.07 0.30 0.10
CEu2 5 12.13 3.55 0.24 0.14
CEu3 8 11.31 5.05 0.27 0.13
CMa1 11 5.85 3.57 0.50 0.14
CMa2 6 7.60 4.41 0.37 0.14
CMa3 13 7.88 343 0.40 0.13
CML1 7 6.36 5.85 0.40 0.09
CML2 8 9.93 4.04 0.32 0.16
CML3 7 9.90 4.04 0.40 0.13
CRf1 53 7.12 3.82 0.36 0.10
CRf2 39 10.54 441 0.27 0.14
CRf3 32 1091 424 0.33 0.15

Zspec
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Fig. 13. An example scatter plot similar to Fig. 9 for the CMal test, showing
the effect of binning and classifying.
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Fig. 14. The confusion matrix of the kNN classification tests using the Euclidean
distance metric. The x-axis of each plot shows the measured spectroscopic
redshift, and the y-axis shows the estimated redshift. The size of the boxes is
scaled based on the width of the bin used for classification. (CEul — Top) uses
a random training sample, (CEu2 — Middle) uses a training sample consisting
of the ELAIS-S1 field, and (CEu3 — Bottom) uses a training sample consisting of
the eCDFS field.
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Fig. 15. The confusion matrix of the kNN classification tests using the Ma-
halanobis distance metric. The x-axis of each plot shows the measured
spectroscopic redshift, and the y-axis shows the estimated redshift. The size
of the boxes is scaled based on the width of the bin used for classification.
(CMa1 — Top) uses a random training sample, (CMa2 — Middle) uses a training
sample consisting of the ELAIS-S1 field, and (CMa3 — Bottom) uses a training
sample consisting of the eCDFS field.

11

Astronomy and Computing 39 (2022) 100557

CML1)

> 1.02

Estimated Redshift
o
~
w

Estimated Redshift
o
~
w

Estimated Redshift
o
~
w

— ™~ (|| o < m [
v o'o'c o o o —
A

Spectroscopic Redshift

Fig. 16. The confusion matrix of the kNN classification tests using the LMNN
learned distance metric. The x-axis of each plot shows the measured spectro-
scopic redshift, and the y-axis shows the estimated redshift. The size of the
boxes is scaled based on the width of the bin used for classification. (CML1 —
Top) uses a random training sample, (CML2 — Middle) uses a training sample
consisting of the ELAIS-S1 field, and (CML3 — Left) uses a training sample
consisting of the eCDFS field.
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Fig. 17. The confusion matrix of the RF classification tests. The x-axis of each
plot shows the measured spectroscopic redshift, and the y-axis shows the
estimated redshift. The size of the boxes is scaled based on the width of the
bin used for classification. (CRf1 — Top) uses a random training sample, (CRf2
— Middle) uses a training sample consisting of the ELAIS-S1 field, and (CRf3 —
Bottom) uses a training sample consisting of the eCDFS field.
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significantly based on the distance metric used — for example, the
z > 1.02 bin was correctly predicted ~50% of the time using the
kNN algorithm paired with Euclidean distance, however, using
the Mahalanobis distance metric brought this up to ~74%.

As with the regression tests, the random training sample out-
performed the training sets built from a single field in the pri-
mary 1o.15 error metric, however, the results are statistically
insignificant (p = 0.4397).

5. Discussion

Most previous work has treated the estimation of galaxy red-
shift as a regression task — estimating a continuous value for
redshift. We have shown that the kNN algorithm — when using
either a learned distance metric, or the Mahalanobis distance
metric — outperforms the RF algorithm, particularly at a redshift
of z < 1. At a redshift of z > 1, both the kNN and RF have
systematic under-estimations, likely caused by the unbalanced
training sample used, with the vast majority of samples at lower
redshifts.

Here we try a different approach, by treating the problem of
calculating point estimates of redshifts as a classification prob-
lem. Previous works have calculated probability density functions
(PDFs) for galaxies by finely binning data and treating it as a clas-
sification problem (Gerdes et al., 2010; Pasquet-Itam and Pasquet,
2018; Eriksen et al., 2020). However, this is subtly different to this
work as the primary purpose here is to identify the high-redshift
galaxies — not to generate PDFs. We balance the data by binning
the data into 15 bins with equal numbers of sources. By allowing
this coarse mapping, we ensure that all redshift values we are
attempting to predict are equally represented, and can therefore
obtain better results at the higher redshift ranges. In particular,
we have included a z > 1 bin, which in our best results (the kNN
algorithm using the Mahalanobis distance metric) we predict in
74% of cases (85% of galaxies at z > 0.8 predicted in the highest
two bins). Again, the kNN algorithm is able to outperform the RF
algorithm.

In addition to the regression and classification tests, we tested
using different training samples. The first training sample is made
up of a random selection across both the ELAIS-S1 and eCDFS
fields. The second and third samples were made up of only one of
the fields, which was then used to predict the other. As expected,
the random sample modelled the test sets better — though not
significantly — than the training samples taken from a single field
only. This is likely due to observational differences — while the
surveys used in this work were designed to be as homogeneous
as possible, there will always be slight differences.

One such difference is the number of sources in each field.
While there is not expected to be differences in the actual source
counts between these fields, there is the potential issue of minor
observational issues (for example, in the radio regime, there
may have been more radio-frequency interference in one set of
observations than another. In the optical regimes, it may have
been that there was slightly different sky conditions affecting the
observations) affecting the fields differently.

The outlier rates across each test are summarised in Fig. 18,
with the top panel showing the outlier rates for each method and
dataset in the Regression regime, and the bottom panel showing
the Classification regime.

5.1. Comparison with previous works

Fair comparisons with previous works are often difficult due to
different features being selected — often studies are conducted on
well-observed, feature rich fields like the COSMOS field, providing
a wealth of UV, NIR and X-ray data that is typically not available
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Fig. 18. A comparison of the 79 15 outlier rates presented in Section 4. The top
panel compares the regression-based tests, with the bottom panel comparing
the classification-based tests. The x-axis shows the different tests run, with the
y-axis showing the 7y 15 outlier rate. The different colours/styled lines represent
the different training data used — the purple solid line used a training sample
randomly selected from both the ELAIS-S1 and eCDFS fields, the blue dotted
line used a training sample comprised of galaxies in the ELAIS-S1 field, and the
greed dashed line used a training sample comprised of galaxies in the eCDFS
field.

for the majority of the sky — and different selection methods —
selecting sources from the SDSS Galaxy survey, where the redshift
range is restricted towards higher redshift and typically do not
have a radio-counterpart, which are shown by Norris et al. (2019)
to be a more difficult challenge. Where the datasets have been
AGN selected, using similar features as in Duncan et al. (2021,
Lockman Hole AGN Experiments), we find our results are highly
competitive, providing a lower outlier rate (~ 6% compared with
~22%, albeit with a higher scatter (o = 0.12 compared with o =
0.077), suggesting that while we are less accurate than others,
we are having fewer estimates that catastrophically fail. This
optimisation of outlier rate (reducing the number of estimations
that catastrophically fail) is motivated by the science goals of the
EMU Project. We note that this comparison should be further
tempered by the fact that the differing training and test set sizes,
and the redshift distribution of the overall datasets have a large
impact on the overall statistics.

6. Conclusion

We have used a radio-selected point-source catalogue consist-
ing of ATLAS radio data, DES optical photometry, SWIRE infrared
data and OzDES spectroscopic redshifts to test the KNN and RF
algorithms for estimating the redshift of galaxies.

We have used both regression and classification modes of
these algorithms in order to balance highly unbalanced training
sets, and have shown that using classification modes increases the
effectiveness of the algorithms at a redshift of z > 1 (noting that
while we are generally able to identify the galaxies at z > 1, we
are unable to estimate their exact redshift). Given this increase
in effectiveness at isolating the high-redshift galaxies using clas-
sification methods, a mix of classification- and regression-based
methods would provide the best possible result over larger red-
shift ranges, allowing the higher redshift galaxies to be identified,
while still being able to estimate the redshift of nearby galaxies
to high accuracy.

In our tests we have shown that when using the classifi-
cation modes of the algorithms, the kNN algorithm using the
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Mahalanobis distance metric performs better than the alternative
methods tested. We particularly note that the z > 1.02 bin
was correctly predicted in 74% of cases — far better than the
regression regimes that fail consistently at that range.

When using the regression modes of the algorithms, the kNN
algorithm using the Mahalanobis distance metric performed sta-
tistically significantly better than most of the alternate methods
tested (kNN using Euclidean Distance: p value = 0.0183, and
the RF algorithm 0.0183) — the kNN algorithm paired with the
Mahalanobis-like MLKR distance metric was statistically insignifi-
cantly different (p = 0.5750). In both regression and classification
methods, the kNN algorithm outperforms the much more widely
used RF algorithm.

Finally, we tested whether there would be a significant differ-
ence in the 7g 15 outlier rate between a model trained and tested
on randomly split data, and a model that is trained on one field
of sky and tested on another. While the results were generally
suggestive of the random training sample out-performing the
field-specific training samples, the difference is not statistically
significant (Regression p value = 0.2072 and classification p value
= 0.4397). This suggests that for new fields being observed with
similar strategies to previously observed fields, any differences
in measured photometry should produce minimal effect on the
estimated redshifts. It should be noted, however, that this does
not take into consideration any differences in photometry caused
by differences in telescopes. For example, if a galaxy was to have
SkyMapper g, r, i and z photometry instead of DES photometry. To
determine the impact of changes of telescopes on the data would
require further testing, and will be the subject of further work
utilising Transfer Learning.

7. Implications for future radio surveys

Traditional photometric template fitting methods typically
struggle to estimate the redshift of radio galaxies. In the near
future, large area radio surveys like the EMU survey are set to
revolutionise the field of Radio Astronomy, with the number of
known radio galaxies set to increase by an order of magnitude.
This work shows that broadband photometry at similar wave-
lengths to those available in present and near-complete all-sky
surveys will be enough to estimate acceptable redshifts for ~95%
of radio sources with coverage over those bands. Further, while
continuous redshift values are particularly difficult to estimate
for radio sources at high-redshift, they can still be identified as
high redshift with the majority of sources correctly placed in the
highest redshift bin using classification modes.
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