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Abstract

In the near future, all-sky radio surveys are set to produce catalogues of tens of millions of sources with limited
multiwavelength photometry. Spectroscopic redshifts will only be possible for a small fraction of these new-found
sources. In this paper, we provide the first in-depth investigation into the use of k-nearest-neighbor (kNN)
regression for the estimation of redshift of these sources. We use Australia Telescope Large Area Survey (ATLAS)
radio data, combined with Spitzer Wide-Area Infrared Extragalactic Survey infrared, Dark Energy Survey optical,
and Australian Dark Energy Survey spectroscopic survey data. We then reduce the depth of photometry to match
what is expected from the upcoming Evolutionary Map of the Universe survey, testing against both data sets. To
examine the generalization of our methods, we test one of the subfields of ATLAS against the other. We achieve an
outlier rate of ∼10% across all tests, showing that the kNN regression algorithm is an acceptable method of
estimating redshift, and would perform better given a sample training set with uniform redshift coverage.

Key words: methods: analytical – methods: statistical – galaxies: distances and redshifts – galaxies: statistics –
(cosmology:) distance scale
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1. Introduction

Large-scale radio surveys are becoming more common,
resulting in catalogues of millions of radio sources with limited
multiwavelength data (Norris 2017). Knowledge of their
redshift is important to achieve most scientific goals (Norris
et al. 2011). While spectroscopic redshifts remain the gold
standard, only a few million spectroscopic redshifts will be
available in this decade, with the Sloan Digital Sky Survey
(SDSS) having measured around three million over the
northern sky (Abolfathi et al. 2018); the Taipan Galaxy Survey
is expecting to provide two million spectroscopic redshifts out
to z=0.4 (da Cunha et al. 2017), and the Wide Area VISTA
Extra-galactic Survey is expecting to measure 2.5 million
redshifts across the souther sky out to z=1.5 (Driver et al.
2016). Alternatively, redshift can also be measured photome-
trically, by comparing the magnitudes at different wavelengths
to templates (Baum 1962; Butchins 1981; Loh & Spillar 1986).
A photometric redshift—or photo-z—is measured using
template fitting, and can be highly accurate, estimating redshift
to an accuracy of s ~D +( ) 0.015z z1 spec (Salvato et al. 2011).
However, this requires high-quality photometry in at least 15
different filter bands, and up to 31 different bands for the high-
accuracy results. Unfortunately, this level of photometry will

not be available for large-scale sky surveys. Additionally,
photometric template-fitting methods tend to fail catastrophi-
cally when attempted on active galactic nuclei (AGNs),
particularly radio-selected AGNs (Duncan et al. 2018; Salvato
et al. 2018).
Rather than measuring the redshift directly in the form of

spectroscopy or indirectly by fitting templates, it has been
shown that a photo-z can be estimated empirically using the
knowledge of previously measured redshifts from similar
astronomical objects.
Machine learning has been applied to this problem in the

past in the form of neural networks (Tagliaferri et al. 2003;
Firth et al. 2003; Collister & Lahav 2004; Cavuoti et al.
2012, 2014, 2015, 2017; Breschia et al. 2013; Sadeh et al.
2016; Pasquet-Itam & Pasquet 2018), random forests (Carliles
et al. 2010; Carrasco et al. 2015; Mountrichas et al. 2017), the
combination of template-fitting methods with Bayesian statis-
tics (Duncan et al. 2018), and the stacking of a self-organised
map and a decision tree (Zitlau et al. 2016). For the most part,
these methods have mainly been concerned with maximizing
the accuracy of the measured redshift by testing with optically
selected galaxy samples, and have been able to achieve a
similar accuracy to template-fitting methods given a large
enough training set. The data sets used have been derived
mainly from optical surveys like the SDSS, limiting the number
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of possible radio-loud AGNs, which also create issues for
photometric template fitting.

Norris et al. (2018) have addressed the problem of relatively
low-quality photometry available from all-sky surveys by
comparing the performance of different algorithms when using
photometry similar to the upcoming Evolutionary Map of the
Universe (EMU) survey (Norris et al. 2011), using radio-
selected AGNs. This has given a glimpse of the expected
accuracies of various techniques when the depth of observa-
tions and the coverage of all frequency bands are not complete.

This paper provides a deeper investigation into the
effectiveness of the k-nearest-neighbor (kNN) algorithm (Cover
& Hart 1967) for estimating redshift. The kNN regression
algorithm has previously been applied to photometric redshifts
by Polsterer et al. (2013), Kügler et al. (2015) and Cavuoti et al.
(2017); however, Kügler et al. used optical spectra from the
SDSS, and Polsterer et al. and Cavuoti et al. used spectroscopic
redshifts and optical magnitudes only from the SDSS. kNN
regression is a regression model, meaning that it uses a training
set of objects and their known redshift values to estimate the
redshift of new objects. In particular, kNN regression estimates
the redshift of each new object as the mean of the redshifts of
the k nearest neighbours from the training set. To perform this
task, we must define a feature space (so that we can represent
each object as a vector), a metric (to provide the distance
between object vectors), and the value of the constant k. The
feature space dimensions are chosen as the set of variables that
are thought to be predictive of the regression response. Each
object is represented as a vector in this space using their
measurements of the feature space variables (e.g., in our case
each object’s vectors contain a set of photometry at different
wavelengths from a given object in the training set). It is
common to find Euclidean distance being used as the kNN
metric, and the number of neighbours k typically set within the
range of 2 and 20.

Given that the speed of the kNN algorithm does not scale
well with the number of dimensions or sources, this algorithm
can be modified to use a k-d tree to find the k most similar
sources (Polsterer et al. 2013). Alternatively, the problem can
be parallelized and run on a GPU. This paper has implemented
the kNN regression algorithm using the publicly available
TensorFlow3 on GPU (Abadi et al. 2015), which provides a
3–5 times speed improvement over the equivalent CPU
version.

Our initial investigation was to determine the suitability of
the kNN algorithm for the problem. We then tested how well
the algorithm generalizes by testing one sub-field against the
other. We next modified our data set to match the depth
expected from the EMU survey, and corresponding sky surveys
from other astronomical regimes. For all of these tests, we

compared the use of Euclidean distance and Manhattan Taxicab
distance.

2. The Data

The data set used in this paper is primarily based on the
Australia Telescope Large Area Survey (ATLAS) Data Release
3 (Norris et al. 2006; Franzen et al. 2015), with cross-
identifications to other wavelengths provided by J. Swan et al.
(2019, in preparation). Other catalogues used include the
Spitzer Wide-Area Infrared Extragalactic (SWIRE) infrared
data set (Lonsdale et al. 2003), the Dark Energy Survey (DES)
optical data set (Abbott et al. 2018), and the Australian Dark
Energy Survey (OzDES) spectroscopic redshift data set (Yuan
et al. 2015; Childress et al. 2017).

2.1. ATLAS

The ATLAS DR3 data set (Franzen et al. 2015) forms the
basis for our total catalogue, providing 1.4 GHz radio flux
densities on 4780 sources measured using the Australia
Telescope Compact Array. The ATLAS data set covers the
European Large Area ISO Survey–South 1 (ELAIS-S1) and
extended Chandra Deep Field South (eCDFS) fields, down to
an r.m.s noise level of ∼15μ Jy.

2.2. SWIRE

The SWIRE data set provides infr-red flux densities at 3.6,
4.5, 5.8 and 8.0 μm, measured using Spitzer (Lonsdale et al.
2003), reaching a 5σ sensitivity of 5, 9, 43, and 40 μJy/beam
respectively. SWIRE identifications were found for 4328 radio
sources at 3.6 μm, providing at least a 3.6 μm flux for ∼91% of
radio sources. All ATLAS sources were initially cross-matched
with SWIRE sources, and then the latter were cross-matched to
the DES sources.

2.3. DES

The DES data set provides g, r, i, and z optical magnitudes
(to a depth of g=24.33, r=24.08, i=23.44, and z=
22.69), measured using the Dark Energy Camera mounted on
the 4m Blanco telescope at the Cerro Tololo Inter-American
Observatory in Chile. (Abbott et al. 2018). The DES data set
provides optical counterparts for 3102 of our radio sources at
g band, covering ∼65% of sources.

2.4. OzDES

The OzDES data set provides the spectroscopic redshifts
required to create any empirical model (Yuan et al. 2015;
Childress et al. 2017). The spectroscopic redshift master list
compiled as the OzDES data set by Childress et al. (2017)
provides spectroscopic redshifts for 2012 radio sources,
covering ∼42% of sources.3 https://www.tensorflow.org/
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2.5. Test Sample

The kNN algorithm works best if the reference data set is
shaped such that the feature space is populated homogeneously,
i.e., avoiding strong concentrations in a certain region, or
sparsely populated regions. In the tests described here, we
made no correction for any excess sources in any of the given
training samples. Instead, we calculated optical and infrared
colours as ci=magi−magi+1. This transformation improves
the distribution of the photometric data over the parameter
space for each band (Norris et al. 2018) and also replaces flux,
which is brightness and redshift dependent, by colour that
depends only on the spectral energy density (Polsterer et al.
2013). We completed this transformation on both the optical
magnitudes and log-transformed infrared fluxes. Note that this
operation reduces the effective number of dimensions of the
feature space by two.

We compiled a a full-sensitivity “DEEP” sample containing
those sources that have photometry at 1.4 GHz, infrared 3.6,
4.5, 5.8, and 8.0 μm, optical g, r, i, and z bands, and a
spectroscopic redshift. This provides us with 1408 sources with
complete photometry and spectroscopy for our tests.

We then selected a “WIDE” sample to match the depth of
photometry expected from the EMU survey (Norris et al.
2011), which will use the SkyMapper survey which has r and i
limits of ≈22 (Wolf et al. 2018) and the AllWISE Infrared
Survey (Cutri et al. 2013) of 3.6 μm > 26 μJy and
4.5 μm > 56 μJy. We removed the 5.8 and 8.0 μm data from
our sample, and rejected any sources that were undetected at
any band at the above limits. The resulting WIDE sample had
760 sources.

As discussed in Section 2.1, the ATLAS catalogue covers
two fields: the ELAIS-S1 field, which makes up 553 of the
1408 sources in the DEEP data set and 281 of the 760 sources
in the WIDE data set, and the eCDFS field, which makes up
855 of the 1408 sources in the DEEP data set and 479 of the
760 sources in the WIDE data set.

3. Experiments

In these experiments, we use the kNN regression algorithm
to estimate redshifts, using the following steps:

1. Compute a distance matrix between all test sources and
training sources.

2. Sort the distance matrix by the distance calculated in step
1, identifying the k closest training sources in feature
space to the test sources.

3. Take the mean redshift of the known sources identified
from step 2, and assign it to the test source.

To apply this method, we split our data into a training and
test set. Depending on the test being run, the training set was
either 70% of the data set in the case of the full data set tests

(Tests 1–4 in Table 1), or the entire sub-field in the case of the
sub-field tests (Tests 5–12 in Table 1). The remaining 30% or
sub-field was set aside as the test set.
To avoid under- or over-fitting the data, 10-fold cross-

validation was used with our training sets, excluding our test
sets, minimizing the number of incorrect estimates. In all tests,
the value of k that minimized the outlier rate varied, and is
listed in Table 2.
We computed 95% confidence intervals for each redshift

prediction using bootstrapping with 1000 iterations. Boot-
strapping is a sampling method that allows us to estimate the
variance of sample estimates under the assumption that the
population from which the sample is taken is approximately
many replications of the sample. The estimated intervals
provide the range in which the true redshift is likely to occur,
while also providing an indication of the uncertainty of the
prediction. These confidence intervals are displayed in the form
of error bars in our figures in Section 4.
In our investigation of the accuracy of kNN, we examined

the effect of varying the following experimental parameters.

1. Distance Metric: we evaluated both the Euclidean
distance metric:

å= -
=

 ( ) ( ) ( )d p q q p, 1
i

n

i i
1

2

and the Manhattan Taxicab distance metric:

å= - = -
=

   ( ) ∣∣ ∣∣ ∣ ∣ ( )d p q p q p q, , 2
i

n

i i
1

where p and q are vectors containing the features of two
sources.

2. Depth of Photometry: we used both the full-sensitivity
DEEP sample and the reduced-sensitivity WIDE sample.

3. Generalization: we randomly selected training and test
sets from both ATLAS sub-fields as one test, and used
one ATLAS sub-field as the training set and the other as
the test set and reverse as additional tests.

As these variations are not independent; each needed to be
completed in combination with all others, resulting in the 12
experiments listed in Table 1.

4. Results

We present the results of the experiments in Table 2 and
Figures 1 to 3.
In Table 2 and Figures 1 to 3, we calculate the outlier rate η as

h =
D > ´ +

´
(∣ ∣ ( ))

( )
z zcount 0.15 1

Number Of Sources
100, 3

spec
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where Δz=zspec− zphoto and the normalized median absolute
deviation σNMAD as

s = ´ -(∣ ( )∣) ( )X X1.4826 median median 4iNMAD

where X is a vector of residuals
In Figures 1, 2, and 3, the top panels show the distribution of

zspec vs zphoto, and the lower panels show the normalised
residuals vs the zspec, where the normalised residuals are
calculated by

D
+
z

z 1
.

spec

For every source plotted on the top panels, we have provided
error bars representing the 95% confidence interval of each
redshift, calculated using the bootstrap method. On each of the
plots, we display multiple statistics:

1. N—the number of sources in the test sample;

2. σ—standard deviation of the residual error, calculated
typically;

3. NMAD—standard deviation of the residual error,
calculated using the normalized absolute deviation
(Equation (4));

4. η—outlier rate, calculated using Equation (3).

These results have all been summarized in Table 2.

4.1. Distance Metric

Across all of our experiments, we have found negligible
difference between using the Manhattan Taxicab distance
metric and the Euclidean distance metric. This indicates that
there were few significant outliers when finding the k nearest
neighbours, as the Manhattan Taxicab distance will minimize
the effect of outliers. In Tests 3 versus 4, 7 versus 8, and 11
versus 12, we find that Euclidean distance provides a slightly
lower outlier rate. In Test 5 versus 6 and 9 versus 10,
Manhattan Taxicab distance provides the better option with
Test 1 versus 2 being equal. In no case, however, does one
distance metric have a difference in outlier rate greater
than 1.78%.

4.2. Depth of Field

In all cases, we find that the outlier rate is higher in the
WIDE data set when compared with the DEEP data set, as
shown by the right-hand pair of panels in Figures 1 to 3. For the
kNN regression algorithm, this is expected in current
catalogues. In the process of modifying the DEEP data set to
become the WIDE data set, all sources that we removed are at
the fainter end of the data set, which are typically the high-
redshift sources. This leaves the WIDE data set with a more
heavily positively skewed distribution of zspec, with the
majority of sources being below z=0.5. For sources at high
redshifts, the kNN algorithm tends to fail because of the

Table 1
Details of Experiments Completed

Experiment Size of Size of Distance Data set Training
Number Training Set Test Set Metric Used Sample

1 986 422 Manhattan DEEP Random
2 986 422 Euclidean DEEP Random
3 532 228 Manhattan WIDE Random
4 532 228 Euclidean WIDE Random
5 553 855 Manhattan DEEP ELAIS-S1
6 553 855 Euclidean DEEP ELAIS-S1
7 281 479 Manhattan WIDE ELAIS-S1
8 281 479 Euclidean WIDE ELAIS-S1
9 855 553 Manhattan DEEP eCDFS
10 855 553 Euclidean DEEP eCDFS
11 479 281 Manhattan WIDE eCDFS
12 479 281 Euclidean WIDE eCDFS

Note. Includes the experiment number; training and test set sizes; the distance metric used; the data set used; and where the training sample came from.

Table 2
Summary of the Results from All Tests

Experiment Test Best Standard NMAD Outlier
Number Size k Deviation Rate

1 422 3 0.1 0.06 7.35%
2 422 14 0.12 0.05 7.35%
3 228 3 0.12 0.06 11.40%
4 228 2 0.12 0.05 10.96%
5 855 13 0.13 0.05 11.11%
6 855 9 0.13 0.05 11.46%
7 479 3 0.12 0.06 13.15%
8 479 4 0.12 0.06 12.11%
9 553 4 0.12 0.06 10.31%
10 553 3 0.12 0.06 9.04%
11 281 2 0.13 0.06 13.88%
12 281 2 0.12 0.06 12.10%

Note. Includes the experiment number, the test size, standard deviation
calculated typically, and by normalized absolute deviation and outlier rate.
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paucity of these sources, forcing low-redshift sources into the
group of nearest neighbours.

A better test would use a larger data set, with a larger
population of high-redshift sources, but such a data set is not
yet available.

4.3. Generalization

While the best-case DEEP experiments using a random
sample as the training set attain the best results, experiments
that train on one ATLAS field, and test on a different ATLAS

field, are not much worse. We can attribute the better results in
the former case to a more uniform and statistically consistent
training sample. This indicates that, with a more consistent
training sample, the kNN regression algorithm should perform
well across different sections of sky.

5. Implications for Large-scale Radio Surveys

Table 2 shows that redshifts can be measured to an accuracy
of about 6% (NMAD) to 12% (standard deviation), with an
outlier rate of about 11%, and this result remains true for all

Figure 1. Summary of the results from Tests 1–4, from left to right. All results displayed here have been trained on sources randomly sampled from the entire ATLAS
data set. The top panels show the distribution of zspec vs zphoto, and the lower panels show the normalised residuals vs the zspec. The dashed red line represents
zspec=zphoto, and the dashed blue lines represent the outlier boundary, calculated using Equation (3).
(A color version of this figure is available in the online journal.)

Figure 2. Summary of the results from Tests 5–8, from left to right. All results displayed here have been trained on sources found exclusively in the ELAIS-S1 field.
Other details are as in Figure 1.
(A color version of this figure is available in the online journal.)
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sources for which photometry is available, independently of the
depth of the photometry.

If we assume that the DEEP sample has the same radio
sensitivity as EMU, and that the WIDE sample has the same
optical/infrared photometric depth as that available for EMU
sources, then the relative sizes of the DEEP and WIDE samples
implies that ∼45% of EMU sources will have the required
photometry for redshift measurement.

We can therefore conclude, based on these tests, that about
40% of EMU sources will have redshifts available, or a total of
about 28 million radio sources.

We plan to extend this work by investigating the effect of (a)
using the non-detection information, (b) using a more sophisti-
cated metric that allows missing values and measurement bounds,
(c) carefully modelling the sensitivity limits of the available
photometric surveys, (d) incorporating other data types (such as
radio and X-ray), (e) quantizing redshift to provide a classifica-
tion problem rather than a regression problem, and (f) obtaining
more high-redshift training data from deep surveys in small
fields. Future work will continue in this direction.

6. Conclusion

The main result from these preliminary experiments is that,
using the kNN algorithm, we can make good estimates of
redshifts in large radio surveys given the photometry that is
likely to be available, although further work is expected to
improve results further. Around 90% of EMU sources with
optical/infrared photometry will have a reliable estimated
redshift, resulting in redshifts for ∼40% of EMU sources.
However, we expect that future work will result in an even
higher fraction of sources with useful redshifts.

We found no obvious difference in the results provided by
Manhattan Taxicab distance and Euclidean distance. However,
greater benefits may be obtained from self-learned distance
metrics that can weight features based on their relevance, and
can deal with missing values.
We found that the DEEP data set reported better results than

the WIDE data set, probably because the WIDE survey
contains mainly low-redshift sources with the few high-redshift
sources having to be estimated from the former. Further work
will characterize what fraction of sources have the required
photometry at higher redshifts.
We found that there was no obvious difference in success

rate if the algorithm used training and test sets from spatially
separate fields in the sky. Experiments 7–8 and 11–12
(different field training sets on the WIDE data set) suggest
that we can overcome the lack of high-redshift sources in
training sets by drawing training sets from small, deep fields
and applying them to targets covering the entire sky.
Finally, this paper has demonstrated that, with sufficient

redshift coverage in the training set, the kNN algorithm
provides acceptable error rates when estimating the redshift of
radio galaxies.

We thank Stefano Cavuoti and his colleagues for use of the
code to plot our results.
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Figure 3. Summary of the results from Tests 9–12, from left to right. All results displayed here have been trained on sources found exclusively in the eCDFS field.
Other details are as in Figure 1.
(A color version of this figure is available in the online journal.)
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