
Inducing controlled error over variable length
ranked lists

Laurence A. F. Park and Glenn Stone

School of Computing, Engineering and Mathematics,
University of Western Sydney, Australia

{l.park,g.stone}@uws.edu.au
http://www.scem.uws.edu.au/~lapark

Abstract. When examining the robustness of systems that take ranked
lists as input, we can induce noise, measured in terms of Kendall’s tau
rank correlation, by applying a set number of random adjacent trans-
positions. The set number of random transpositions ensures that any
ranked lists, induced with this noise, has a specific expected Kendall’s
tau. However, if we have ranked lists of varying length, it is not clear how
many random transpositions we must apply to each list to ensure that we
obtain a consistent expected Kendall’s tau across the collection. In this
article we investigate how to compute the number of random adjacent
transpositions required to obtain an expected Kendall’s tau for a given
list length, and find that it is infeasible to compute for lists of length
more than 9. We also investigate an alternate and more efficient method
of inducing noise in ranked lists called Gaussian Perturbation. We show
that using this method, we can compute the parameters required to in-
duce a consistent level of noise for lists of length 107 in just over six
minutes. We also provide an approximate solution to provide results in
less than 10−5 seconds.

1 Introduction

The robustness of a modeling or prediction system is defined as the system’s
ability to handle noise or error applied to its input, and operate within certain
limits. For example, if we have a classification system that predicts a state, given
a set of observations, we can measure its accuracy by examining how many of
its predictions are correct. We can then measure the robustness of the system by
applying a specified level of random noise to the observations, and then examine
its change in accuracy. Of course, if we increased the level of the added noise, we
would expect the accuracy of the system to decrease, but a more robust system
would provide a slower decrease.

To determine the robustness level of a system, we must often perform a sim-
ulation experiment, where we can control the noise. Noise is usually randomly
sampled from a predefined distribution with carefully chosen parameters to en-
sure the noise is consistent for the experiment. For example, if our observations
are elements of the real number set, we may generate noise using a Normal dis-
tribution with zero mean and variance of one. If our observations are frequency
values, we may generate noise using a Poisson distribution with mean 1. Fur-
ther experiments can then be performed by adjusting the variance of the noise
distribution and measuring the change in accuracy.

Many systems, such as collaborative filtering systems, meta search engines,
query expansion systems, and rank aggregation systems require a set of ranked
items as input.

Therefore, to measure the robustness of such systems, we can randomly per-
mute the lists to obtain a given expected Kendall’s τ between the permuted
and unpermuted lists. We can achieve this by performing a set number of ran-
domly chosen adjacent transpositions, as long as all of the list lengths are the
same. If the lists lengths are not the same, it is not clear how many adjacent
transpositions we should apply to obtain a given expected Kendall’s τ across all
lists.

In this article, we investigate how to compute the number of random adjacent
transposition required to obtain a given expected τ for a given list length. We find
that this is a very computationally expensive task. We also propose an alternate
method of inducing error in ranked lists called Gaussian Perturbation. We show
that its parameter is a function of the rank correlation reduction caused by the
error, and therefore can be used to induce controlled noise in ranked lists. We
provide the following contributions:

– An analysis of the relationship between the expected Kendall’s τ , the number
of random adjacent transpositions and the list length (Section 3.1),

– A novel ranked list noise induction method called Gaussian Perturbation
that can be computed for larger lists in reasonable time, (Section 3.2),

– An approximate version of Gaussian Perturbation to compute the required
parameters in minimum time (Section 3.3).

The article will proceed as follows: Section 2 reviews how we measure the ro-
bustness of a system, and examines the form of Kendall’s τ . Section 3 examines
the noise induced using random adjacent transpositions, introduces and anal-
yses Gaussian Perturbation, and provides a faster approximation to Gaussian
Perturbation.

2 Robustness using ranked lists

To assess the robustness of a prediction system using simulation, we must define
a method of inducing controlled noise into the observation space. In this section,
we will examine how to measure robustness, given a noise distribution. We will
then examine how to use Kendall’s τ rank correlation to measure the induced
noise.

2.1 Measuring system robustness

A robust system is one that can function within a set of predefined limits in a
noisy (error prone) environment. Therefore a robust classification system would
be able to provide a certain level of accuracy, when making predictions based on
observations, with a given level of noise. For example, if our observation space
is the one dimensional real line R, we might define an unknown true value as
a ∈ R, and an observation with added noise as â = a + ε where ε ∼ N(0, σ), a
sample from a Normal distribution, with mean 0 and standard deviation σ.

In this situation the level of noise is controlled by the parameter σ. As the
difference between the noisy and noise free observations increase, we would ex-
pect the system prediction accuracy to change, but we would expect a more
robust system’s behaviour to change less.

Analysis of robust system behaviour has provided us with strategies that
allow prediction models to provide good accuracy using a wide range of observa-
tion input data. Some well known general strategies are to use cross validation
when training a model [12] and including a regularisation term in the optimisa-
tion function (used in SVMs [13] and Lasso/Ridge regression [7]). Such systems
introduce bias into the optimisation, in order to reduce the variance of the clas-
sification, and hence increase the robustness.

Similar methods can be used in clustering and dimension reduction. Com-
pressive sampling has been used in image analysis [2], clustering [11] and outlier
detection [1]. Each of these methods use l1 regularisation to obtain sparse so-
lutions to the dimension reduction, clustering, and outlier detection problems.
These methods have also been applied to Principal Component Analysis [3], to
obtain biased, but more robust principal components.

Now consider the observation space as the set of all ranked lists of multiple
lengths. There are many systems that have an observation space of ranked lists,
therefore it is important that we provide a method of measuring the robustness
of this space. Systems using Collaborative filtering [9] use an observation space
of ranked lists. These systems obtain ranked responses from the user community
and aggregate them to assist in the decision making process. Query expansion [4]
also requires ranked lists, where ranked documents are used to extract potential
query terms. Meta search over multiple databases [8, 6] obtain ranked results
from various databases (e.g. airline travel prices, book prices, Web search results)
and combines them to form a single result. Also, Rank aggregation systems [5,
10] are used to combine multiple ranked lists into a single ranked list (e.g. results
from tennis competitions to form an overall player ranking).

To test the robustness of methods applied in such systems, we need a method
to induce noise into ranked lists. Furthermore, we must be able to control the
amount of noise induced. Ranked lists contain ordinal numbers, therefore the
error term ε would be the application of a random permutation of the list ele-
ments (clearly, simply adding an error variate to the true ranking will not be
appropriate for ordinal numbers).

2.2 Measuring error in ranked lists

The ranking of n items can be identified with an ordering of the integers 1, . . . , n.
Thus the sample space for ranked lists can be considered Sn, the set of permu-
tations of the integers 1 to n. We will talk about elements x = (x1, . . . , xn) of
Sn, where xi is the rank of item i. Note that we cannot induce error on lists of
length n = 1, therefore, we will only consider n > 1 in this article.

Given two rankings x and y ∈ Sn, one way to measure the similarity of the
two rankings is using Kendall’s τ rank correlation. Kendall’s τ is defined as:

τ(x,y) =

∑
1≤i<j≤n cij − dij
n(n− 1)/2

where the sum is over the set of all possible pairs of items being ranked, and

cij =

{
1, if ((xi < xj) and (yi < yj)) or ((xi > xj) and (yi > yj))
0, otherwise

and dij = 1 − cij . A pair of items are concordant (cij = 1) if their ordering
in each of the two lists matches, otherwise they are discordant (dij = 1). We
can see that τ = 1 if and only if x = y (all items are concordant), implying
perfect correlation. Also τ = −1 if and only if x = reverse(y) (all items are
discordant), implying perfect anti-correlation. The result of τ = 0 implies no
correlation between x and y. Therefore, Kendall’s τ can be simplified to:

τ(x,y) =
2
∑

1≤i<j≤n cij

n(n− 1)/2
− 1

since
∑

1≤i<j≤n cij + dij = n(n− 1)/2.
We can use Kendall’s τ to measure the noise induced in a ranked list. Given

ranked lists x,y ∈ Sn, the level of noise between x and y is measured using
τ(x,y). The greater the value of τ , the lower the amount of noise.

Since Kendall’s τ is a measure of correlation, it is comparable across lists of
different lengths. This means that if we induce noise on a list of length n1 and on
another of length n2, where the measure of noise using Kendall’s τ is the same
for both, then we have induced the same level of noise for both lists.

3 Inducing controlled noise in ranked lists

To examine the robustness of a system, we must examine how it performs when
noise is introduced. If the system takes a set of ranked lists as input, we must
induce controlled noise in the ranked lists. We showed that error in ranked
lists can be measured using Kendall’s τ , which is a function of the permutation
required to remove error from the erroneous ranked list. Therefore, to induce
controlled noise, we must perform controlled permutations.

Ideally, supposing the truth to be x ∈ Sn, we would weight all elements
y ∈ Sn such that the expected τ is as desired. We can then sample from the set
Sn with probability proportional to the assigned weights. However, there are n!
elements in Sn and enumeration rapidly becomes impractical.

In this section, we examine two methods of sampling from Sn to obtain an
expected τ ; one controlled by the number of transpositions t, the other controlled
by the standard deviation σ.

3.1 Using Adjacent Transpositions to induce controlled noise

When measuring error using Kendall’s τ , an obvious choice of inducing error
is to perform adjacent transpositions. The set of adjacent transpositions is a
generating set for the symmetric group, therefore we can obtain every possible
ranking of n items using a finite sequence of adjacent transpositions.

To induce error in a ranked list x of length n, we randomly select xi, where
i ∈ {1, 2, . . . , n−1} and transpose it with the adjacent item xi+1. By performing

t random adjacent transpositions, we obtain a permuted list y, which when com-
pared to the original list x, gives a value of τ . If we repeat this random process
many times, we find that we obtain a distribution over τ , that is dependent on
n and t.

To compute the expected Kendall’s τ after t random adjacent transpositions,
we first construct the probability transition matrix containing the probability of
moving from one state to another in one adjacent transposition. The state of
the list is the order of the items in the list. Therefore, if there are n items in
the list, there are n! possible states. The probability transition matrix will be
of size n!× n!, but each column will contain only n− 1 nonzero elements (since
for any list of n items, we can only move to n − 1 other states using a single
adjacent transposition). This gives us a probability transition matrix containing
n!× (n− 1) nonzero elements.

For example, if n = 3, we have the n! = 6 possible states x1 = (1, 2, 3),
x2 = (1, 3, 2), x3 = (3, 1, 2), x4 = (3, 2, 1), x5 = (2, 3, 1) and x6 = (2, 1, 3)
giving a probability transition matrix T with n!(n− 1) = 12 nonzero values:

T =

0 0.5 0 0 0 0.5

0.5 0 0.5 0 0 0
0 0.5 0 0.5 0 0
0 0 0.5 0 0.5 0
0 0 0 0.5 0 0.5

0.5 0 0 0 0.5 0

 (1)

where ti,j , the elements of T , contain the probability of moving from state j to
state i. If we begin in state 1: x1 = (1, 2, 3), our initial state probability vector is
p0 = [1 0 0 0 0 0]′. By taking a random walk of length 1, we compute our new
state probability as p1 = Tp0 = [0 0.5 0 0 0 0.5]′. A random walk of length 2
is computed as p1 = Tp1 = T 2p0 = [0.5 0 0.25 0 0.25 0]′. A random walk of
length n gives us the state distribution Tnp0. Once we have the probability of
each state after t random adjacent transpositions, we can compute the expected
Kendall’s τ using:

E[τ] =

n!∑
i=1

pt,iτ(xi,x1) (2)

where pt,i is the ith element of pt. If we perform two random transpositions (a
random walk of length 2), on a list of length n = 3, we can obtain a Kendall’s τ
of 0 or −1/3, but the expected Kendall’s τ is:

E[τ] = 0.5× 1 + 0× 1/3 + 0.25× (−1/3)

+ 0× (−1) + 0.25× (−1/3) + 0× 1/3 = 1/3

By representing the problem as a random walk on an undirected graph, we ob-
tain additional information about its stationary distribution, being proportional
to the degree of each vertex over an undirected graph. The degree of each vertex
over the set of permutations is equal (n − 1), therefore the stationary distribu-
tion is the Uniform. This implies that as the number of adjacent transpositions
approaches infinity, each state is equally likely. Kendall’s τ is symmetric about

List length 2 3 4 5 6 7 8 9

Nonzero 2 12 72 480 3600 30240 282240 2903040
Time (sec) 0.055 0.099 0.311 1.322 7.628 56.034 9.78 min 10.38 hr

Table 1. The number of nonzero elements (Nonzero) in the adjacent transposition ad-
jacency matrix and the computation time required (Time) to compute the 50 expected
values.

0 over all permutation states, therefore the expected Kendall’s τ approaches 0
as t approaches infinity for all lists of length n > 1.

Given the task of randomly sampling ranked lists of length n with a given
expected τ error, it is not obvious how we should choose t. In fact there is no
way to directly compute t, other than trial and error (set t and n and examine
the associated expected τ). To achieve this task, we have provided Table 2 con-
taining the computed expected τ values of lists of length 2 to 9, using 1 to 50
random adjacent transpositions. So given E[τ] = 0.5952, the table shows that
we are required to perform 13 random adjacent transpositions for n = 8. If we
induce error in lists of length 7 and 9, we find that 9 and 18 random adjacent
transpositions will provide the wanted E[τ] respectively.

We have also provided the computation time for each of the lists in Table 1.
It is interesting to note how fast the number of nonzero elements and computa-
tion time grows as n increases. Based on the trend, we found that the time is
increasing double exponentially, meaning that the expected τ for n = 10 would
take approximately 100 days to compute. Clearly, it is not feasible to compute
the expected τ using this method for lists of length 10 or more.

3.2 Using Gaussian Perturbation to induce controlled noise

Rather than performing adjacent transpositions, controlled noise can be induced
in ranked lists by perturbing the rank of the elements. Perturbation requires
the introduction of a latent value for each item i as a sample from a Normal
distribution Xi ∼ N(µ = xi, σ), with mean equal to its rank xi and constant
standard deviation σ.

Once we have sampled a value for each item, we generate the new rank, by
ordering the latent values. An example of this process is shown in Figure 1. We
can see in this example four items (1, 2, 3, 4), each having a Normal distribution
with equal standard deviation, centred on its rank. A sample from these four
distributions gives (1.2, 3.1, 2.7, 4.4), providing us with the noise induced ranked
list (1, 3, 2, 4). Using this method of noise induction, it is more likely that each
item moves a smaller number of ranks than one item move a large number, which
is the typical form of error seen in ranked lists.

t
List length

2 3 4 5 6 7 8 9

1 -1.0000 0.3333 0.6667 0.8000 0.8667 0.9048 0.9286 0.9444
2 1.0000 0.3333 0.5556 0.7000 0.7867 0.8413 0.8776 0.9028
3 -1.0000 0.0000 0.4198 0.6125 0.7216 0.7901 0.8361 0.8685
4 1.0000 0.1667 0.3580 0.5469 0.6681 0.7469 0.8007 0.8389
5 -1.0000 -0.0833 0.2716 0.4883 0.6216 0.7091 0.7695 0.8127
6 1.0000 0.1250 0.2318 0.4395 0.5807 0.6754 0.7414 0.7890
7 -1.0000 -0.1042 0.1759 0.3955 0.5440 0.6449 0.7158 0.7673
8 1.0000 0.1146 0.1501 0.3571 0.5107 0.6170 0.6922 0.7472
9 -1.0000 -0.1094 0.1139 0.3223 0.4803 0.5911 0.6703 0.7285
10 1.0000 0.1120 0.0972 0.2913 0.4523 0.5672 0.6498 0.7109
11 -1.0000 -0.1107 0.0738 0.2633 0.4264 0.5447 0.6306 0.6943
12 1.0000 0.1113 0.0630 0.2381 0.4023 0.5237 0.6124 0.6786
13 -1.0000 -0.1110 0.0478 0.2153 0.3798 0.5038 0.5952 0.6637
14 1.0000 0.1112 0.0408 0.1947 0.3587 0.4850 0.5789 0.6494
15 -1.0000 -0.1111 0.0309 0.1761 0.3390 0.4672 0.5633 0.6358
16 1.0000 0.1111 0.0264 0.1593 0.3205 0.4503 0.5483 0.6227
17 -1.0000 -0.1111 0.0200 0.1441 0.3030 0.4342 0.5341 0.6102
18 1.0000 0.1111 0.0171 0.1303 0.2865 0.4188 0.5204 0.5981
19 -1.0000 -0.1111 0.0130 0.1179 0.2710 0.4041 0.5072 0.5864
20 1.0000 0.1111 0.0111 0.1066 0.2564 0.3900 0.4945 0.5752
21 -1.0000 -0.1111 0.0084 0.0964 0.2426 0.3765 0.4823 0.5643
22 1.0000 0.1111 0.0072 0.0872 0.2295 0.3636 0.4705 0.5538
23 -1.0000 -0.1111 0.0054 0.0789 0.2171 0.3511 0.4591 0.5436
24 1.0000 0.1111 0.0046 0.0714 0.2055 0.3391 0.4481 0.5337
25 -1.0000 -0.1111 0.0035 0.0645 0.1944 0.3276 0.4374 0.5241
26 1.0000 0.1111 0.0030 0.0584 0.1840 0.3166 0.4271 0.5148
27 -1.0000 -0.1111 0.0023 0.0528 0.1741 0.3059 0.4171 0.5057
28 1.0000 0.1111 0.0019 0.0478 0.1648 0.2956 0.4074 0.4968
29 -1.0000 -0.1111 0.0015 0.0432 0.1559 0.2857 0.3979 0.4882
30 1.0000 0.1111 0.0013 0.0391 0.1476 0.2761 0.3887 0.4798
31 -1.0000 -0.1111 0.0010 0.0353 0.1397 0.2669 0.3798 0.4716
32 1.0000 0.1111 0.0008 0.0320 0.1322 0.2580 0.3711 0.4636
33 -1.0000 -0.1111 0.0006 0.0289 0.1251 0.2494 0.3627 0.4558
34 1.0000 0.1111 0.0005 0.0262 0.1184 0.2411 0.3545 0.4482
35 -1.0000 -0.1111 0.0004 0.0237 0.1120 0.2331 0.3465 0.4407
36 1.0000 0.1111 0.0003 0.0214 0.1060 0.2254 0.3387 0.4335
37 -1.0000 -0.1111 0.0003 0.0194 0.1003 0.2179 0.3311 0.4263
38 1.0000 0.1111 0.0002 0.0175 0.0950 0.2106 0.3236 0.4193
39 -1.0000 -0.1111 0.0002 0.0158 0.0899 0.2037 0.3164 0.4125
40 1.0000 0.1111 0.0001 0.0143 0.0851 0.1969 0.3094 0.4058
41 -1.0000 -0.1111 0.0001 0.0130 0.0805 0.1904 0.3025 0.3993
42 1.0000 0.1111 0.0001 0.0117 0.0762 0.1841 0.2958 0.3928
43 -1.0000 -0.1111 0.0001 0.0106 0.0721 0.1780 0.2892 0.3865
44 1.0000 0.1111 0.0001 0.0096 0.0682 0.1721 0.2828 0.3804
45 -1.0000 -0.1111 0.0000 0.0087 0.0646 0.1664 0.2766 0.3743
46 1.0000 0.1111 0.0000 0.0078 0.0611 0.1609 0.2705 0.3684
47 -1.0000 -0.1111 0.0000 0.0071 0.0578 0.1556 0.2645 0.3626
48 1.0000 0.1111 0.0000 0.0064 0.0547 0.1505 0.2587 0.3568
49 -1.0000 -0.1111 0.0000 0.0058 0.0518 0.1455 0.2530 0.3512
50 1.0000 0.1111 0.0000 0.0053 0.0490 0.1407 0.2474 0.3457

Table 2. The expected Kendall’s τ after t transpositions over lists is length 2 to 9.

1

2

3

4

1.2

3.1
2.7

4.4

1

2

3

4

x

y

ỹ

Fig. 1. Inducing error in ranked list x containing four items, using Gaussian Pertur-
bation. Each item is treated as a Normal distribution with mean equal to its rank
and constant standard deviation (in this case, σ = 1). A ranked list with error y is
obtained by sampling from the Normal distributions (to obtain the latent values ỹ),
then ordering by the sample value. We can see that a value of 3.1 was sampled from
the Normal distribution with mean 2, and 2.7 was sampled from the distribution with
mean 3, pushing item 3 to the 2nd rank and item 2 to the 3rd rank.

Using Gaussian Perturbation, we can compute the expected τ as a function
of n and σ. The expected value of τ is given as:

E[τ] = E
[

2
∑

1≤i<j≤n cij

n(n− 1)/2
− 1

]
=

2
∑

1≤i<j≤n E [cij]

n(n− 1)/2
− 1 (3)

showing that it is dependent on the expected concordance of each pair of items.
Let us consider x the ranked list of length n, and the permuted list y, based
on latent values ỹ, which are realisations of Normal random variables Ỹ . Given
two items i and j, where xi < xj in ranked list x, then the pair is concordant if
yi < yj which happens if and only if ỹi < ỹj . Now;

E [cij] = 1× P (cij = 1) + 0× P (cij = 0)

= P (ỹi < ỹj)

= P (ỹi − ỹj < 0)

and ỹi is a sample from a distribution N(µ = xi, σ). Therefore, ỹi−ỹj is a sample

from a Normal distribution with mean µ = xi−xj , and standard deviation
√

2σ.
After standardising, we obtain:

E [cij] = P

(
Z <

xj − xi√
2σ

)
(4)

List Length 101 102 103 104 105 106

Computation Time (sec) 0.002 0.020 0.254 3.083 34.259 379.931

Table 3. The computation time to compute σ when given E[τ] and n for Gaussian
Perturbation for lists of length 101 to 106.

where Z ∼ N(0, 1) is the standard Normal distribution. Substituting equation 4
back into 3 gives:

E[τ] =
∑

1≤i<j≤n

P

(
Z <

xj − xi√
2σ

)
4

n(n− 1)
− 1

By noticing that xj − xi is an integer from 1 to n − 1, and the sum involves
several copies of each such integer, we can simplify the equation further:

E[τ |n, σ] =

n−1∑
k=1

P

(
Z <

k√
2σ

)
4(n− k)

n(n− 1)
− 1 (5)

Since σ > 0 and n > 1, each term of the sum in equation 5 is non-negative,
showing that E[τ |n, σ] ≥ 0. E[τ |n, σ] can only be zero when all terms of the sum
are zero, implying that E[τ |n, σ]→ 0 if and only if σ →∞.

Using equation 5, we can compute the value of σ for a given E[τ] and n using
a one-dimensional optimisation function. For example, if we want to induce noise
so that E[τ] = 0.6, we find that we must assign σ = 22.46, 44.48 and 110.54 for
n = 100, 200 and 500 respectively.

Table 3 provides us with the computation time to perform the one-dimensional
optimisation to compute σ. The table shows us that the time to compute σ in-
creases linearly with n. When comparing this to Table 1, we see that Gaussian
Perturbation has benefit over the Adjacent Transposition sampling method in
terms of the parameter computation time.

3.3 Estimating σ for Gaussian Perturbation

In the previous section, we derived the equation for E[τ], dependant on n and σ,
and stated that we had to run a one dimensional optimisation over the function
to compute σ when given E[τ] and n. The computation of σ would be faster if we
had a formula that gives the appropriate σ in terms of n and E[τ]. Unfortunately,
σ is embedded in the Normal cumulative density function (CDF) and summed
n− 1 times.

To allow inversion of equation 5 we have made use of the Shah piece-wise
approximation [14] to the Standard Normal CDF:

P (Z < x) =

x(4.4− x)/10 + 1/2 if x ≤ 2.2
0.99 if 2.2 < x < 2.6
1 if x ≥ 2.6

(6)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

z

P
(Z

 <
 z

)

Cumulative Standard Normal
Shah approximation

Fig. 2. The Cumulative Standard Normal function and the Shah piece-wise approxi-
mation.

for x ≥ 0. The similarity of the Shah approximation to the Standard Normal
CDF is shown in Figure 2.

If we assume that (n − 1)/(
√

2σ) ≤ 2.2, we can substitute P (Z < x) with
the first piece of the Shah approximation x(4.4 − x)/10 + 1/2. By making this
substitution into equation 5 and simplifying, we obtain the expected τ approxi-
mation:

E[τ |n, σ] ≈ 4.4
√

2(n+ 1)

30σ
− (n+ 1)n

60σ2

which is a quadratic equation in terms of 1/σ. By solving for σ, we obtain:

σ ≈ n

4.4
√

2±
√

2× 4.42 − 60E[τ]n
n+1

(7)

providing a solution under the condition E[τ] < 4.42 n+1
n /30, meaning that we

can compute an approximate σ for all values of n when 0 < E[τ] < 0.6453, and
greater values of E[τ] as n decreases. Also note that σ → ∞ as E[τ] → 0, as
shown in equation 5.

Of the two solutions, the negative form provides accurate estimates for most
of the τ, n combinations, but the positive form provides poor estimates. To ex-
amine the estimate’s accuracy, we chose a desired value of E[τ], used equation 7
to compute the approximate σ, then used equation 5 to compute the obtained

0.000

0.005

0.010

0.015

0.020

0.025

0.030

2 5 10 20 50 100

0.2

0.4

0.6

0.8

Number of items

D
es

ire
d

ex
pe

ct
ed

 K
en

da
ll'

s
ta

u

NA

Fig. 3. The absolute difference when comparing the desired expected Kendall’s τ , to
the obtained expected Kendall’s τ , when using the approximate σ computed from
equation 7. The difference is computed for varying number if items (n) and desired
expected Kendall’s τ (E[τ]).

E[τ]. Figure 3 shows the absolute difference in desired E[τ] compared to the ob-
tained E[τ], when using an approximate σ. We can see that that the σ estimate
is a good estimate since most of the error is smaller than 0.01.

When using equation 7 to compute σ the computation time is less that 10−5

seconds for all n.

4 Conclusion

To examine the robustness of systems that take ranked lists as input, we can
induce noise by applying a set number of random adjacent transpositions, where
the error is measured using Kendall’s τ rank correlation. For a fixed list length
n, we can ensure a fixed expected τ by keeping the number a random adjacent
transpositions constant, allowing a consistent level of noise to be applied to
all lists. If the lists are of varying length, it is not clear how many adjacent
transposition should be applied to each list to obtain a consistent expected τ
over all lists.

In this article, we examined the relationship between the expected τ , the list
length n and the number of random adjacent transpositions t. We found that it
is possible to compute the expected τ , given n and t, but the computation time
rapidly increases with n, making the computation infeasible for n > 9.

We also proposed a new method of inducing noise in ranked lists called
Gaussian Perturbation, which allows us to derive an equation for the expected
τ when given n and its parameter σ. The parameter σ can be computed in
reasonable time for large lists (just over six minutes for lists of length 106),
allowing us to compute σ for various list lengths while keeping the expected τ
constant over all lists.

We also provided an approximate solution for σ that requires less that 10−5

seconds of computation time for all n.

References

1. M. Aouf and L. A. F Park. Approximate document outlier detection using random
spectral projection. In AI 2012: Advances in Artificial Intelligence, pages 579–590.
Springer, 2012.

2. E.J. Candès and M.B. Wakin. An introduction to compressive sampling. Signal
Processing Magazine, IEEE, 25(2):21–30, 2008.

3. Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal
component analysis? J. ACM, 58(3):11:1–11:37, June 2011.

4. Claudio Carpineto and Giovanni Romano. A survey of automatic query expansion
in information retrieval. ACM Computing Surveys (CSUR), 44(1):1, 2012.

5. C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for
the web. In Proceedings of the 10th international conference on World Wide Web,
pages 613–622. ACM, 2001.

6. Mohamed Farah and Daniel Vanderpooten. An outranking approach for rank ag-
gregation in information retrieval. In Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information retrieval,
SIGIR ’07, pages 591–598, New York, NY, USA, 2007. ACM.

7. J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning,
volume 1. Springer Series in Statistics, 2001.

8. B. Krüpl, W. Holzinger, Y. Darmaputra, and R. Baumgartner. A flight meta-
search engine with metamorph. In Proceedings of the 18th international conference
on World wide web, pages 1069–1070. ACM, 2009.

9. G. Linden, B. Smith, and J. York. Amazon. com recommendations: Item-to-item
collaborative filtering. Internet Computing, IEEE, 7(1):76–80, 2003.

10. Y.T. Liu, T.Y. Liu, T. Qin, Z.M. Ma, and H. Li. Supervised rank aggregation.
In Proceedings of the 16th international conference on World Wide Web, pages
481–490. ACM, 2007.

11. L. A. F. Park. Fast approximate text document clustering using compressive sam-
pling. In Machine Learning and Knowledge Discovery in Databases, pages 565–580.
Springer, 2011.

12. E. Ronchetti, C. Field, and W. Blanchard. Robust linear model selection by cross-
validation. Journal of the American Statistical Association, 92(439):1017–1023,
1997.

13. B. Schölkopf and A.J. Smola. Learning with kernels: Support vector machines,
regularization, optimization, and beyond. MIT press, 2001.

14. A.K. Shah. A simpler approximation for areas under the standard normal curve.
The American Statistician, 39(1):80–80, 1985.

