
Web Page Prediction Based on
Conditional Random Fields

Yong Zhen Guo and Kotagiri Ramamohanarao and Laurence A. F. Park 1

Abstract. Web page prefetching is used to reduce the access la-
tency of the Internet. However, if most prefetched Web pages are not
visited by the users in their subsequent accesses, the limited network
bandwidth and server resources will not be used efficiently and may
worsen the access delay problem. Therefore, it is critical that we have
an accurate prediction method during prefetching. Conditional Ran-
dom Fields (CRFs), which are popular sequential learning models,
have already been successfully used for many Natural Language Pro-
cessing (NLP) tasks such as POS tagging, name entity recognition
(NER) and segmentation. In this paper, we propose the use of CRFs
in the field of Web page prediction. We treat the accessing sessions
of previous Web users as observation sequences and label each ele-
ment of these observation sequences to get the corresponding label
sequences, then based on these observation and label sequences we
use CRFs to train a prediction model and predict the probable sub-
sequent Web pages for the current users. Our experimental results
show that CRFs can produce higher Web page prediction accuracy
effectively when compared with other popular techniques like plain
Markov Chains and Hidden Markov Models (HMMs).

1 Introduction

While the Internet is developing rapidly, the number of users surfing
the Internet is dramatically increasing. Even though the construction
of the Internet infrastructure is developing very quickly, many users
still connect to the Internet through slow connections. According to
[28], in 2007 about 20% of the 162 millions Internet users in China
access the Internet using slow dial-up connections. Meanwhile, be-
cause of the popularization and convenience of wireless connection,
many users have begun to use mobile phones or PDAs to surf the
Internet. For example, in 2007, at least 34% of the Internet users had
wireless devices in both China [28] and America [29], and this ra-
tio keeps increasing steadily. On account of the limited bandwidth
and low-speed connection, usually many dial-up and wireless Inter-
net users need to spend long periods of time waiting for the Web
pages they are visiting to be transferred to them through Internet,
which may lead to intolerable delays. Moreover, the access latency
problem of broadband users is noticeable as well and can be im-
proved.

In order to decrease the access latency of the Internet, a variety of
different approaches have been proposed, among which caching and
prefetching are two primary methods.

The caching technique has been widely used on the Internet. It
greatly improves access speed by saving local copies of the Web
pages that users are currently visiting, so that their browsers will not
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need to connect to the Internet to download these pages during fu-
ture visits. However, the caching technique has some shortcomings.
Firstly, a Web page can not be cached if it has not been previously
accessed. Secondly, its function will be nullified if the Web resources
on the Internet have been modified or updated (for example, the Web
pages’ contents are changed). In addition, to maintain the consis-
tency of copies at the client side and the corresponding Web pages at
the server side is quite expensive. Thirdly, if the caches are saved at
the client side, when a user uses another computer to surf the Inter-
net, the caches that have already been saved in his original computer
will be useless for his current access to the Internet. These problems
reduce the attractiveness of caching.

Web page prefetching techniques are introduced as another effec-
tive way to address the access latency problem and thus improve the
usability and user retention of a Web site. By analyzing the Web log
and a user’s current access path in combination with the link structure
using different methods (such as association rules mining, Markov
models or neural network), the Web pages that the user may access
in the immediate future can be predicted by the Web site server and
transferred before the user requests them. When the user accesses the
page, there is no latency since the page has already been downloaded.
It has been proven by many practical applications that the Web page
prefetching technique is able to decrease a user’s access delay dra-
matically and thus enhance the service quality of the World Wide
Web [2]. The results from the simulations in [3] show that a 36% re-
duction in the latency perceived by an Internet user can be achieved
at the cost of a 40% increase in the network traffic. Moreover, the
studies in [2] indicate that by using the “rate-controlled” prefetching
to smooth the transfer rates of prefetched pages can significantly re-
duce the network traffic congestion caused by “aggressive” prefetch-
ing and, therefore, improve the performance of the Internet.

However, if most prefetched Web pages are not visited by the users
in their subsequent accesses (implying that the prefetching method
has predicted these users’ actions poorly), the limited network band-
width and server resources will not be used efficiently, and hence
may worsen the access latency problem. Therefore, the success of a
prefetching method relies mainly on the prediction accuracy.

In this paper, we propose a novel Web page prediction approach
based on Conditional Random Fields (CRFs) [1] to improve the pre-
diction accuracy. CRFs are powerful probabilistic framework for la-
beling and segmenting sequential data. Owing to their conditional na-
ture, CRFs have the ability to model the dependencies among obser-
vation elements; they can also incorporate various features from ob-
servation sequences to increase the prediction accuracy. CRFs have
already been used with success to many labeling-related tasks, such
as text chunking [4], part-of-speech (POS) tagging [1], intrusion de-
tection [5] and even predicting the secondary structures of protein
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sequences [6]. If we consider the access sessions of previous Inter-
net users as observation sequences, and in each observation sequence
we use each pageview’s subsequent pageview as its label to get the
corresponding label sequence (each pageview is an observation ele-
ment), then we can employ CRFs to model the access behaviors of
all previous users and predict the possible Web pages that a current
user will request in his subsequent access. We show in this paper that
the CRF-based Web page prediction approaches have distinct advan-
tages over other well known techniques such as plain Markov Chains
and Hidden Markov Models (HMMs).

The rest of this paper is organized as follow: In Section 2 we
briefly review the related works concerning Web page prediction
and personalization. In Section 3, we first discuss the main differ-
ences between generative models and discriminative models, and
then briefly introduce the basic principle of CRFs. The novel CRF-
based Web page prediction approaches are presented in Section 4
along with the experimental results and evaluations. Finally, we con-
clude in Section 5 with our future work.

2 Related Works

Ming Syan Chen et al. [7] introduced the notion of “maximal for-
ward reference (MFR)” to identify users’ transactions and employed
data mining techniques (such as association rules discovery) to mine
frequently-accessed paths and make predictions. They first converted
the original log data sequence into a set of maximal forward ref-
erences and eliminated the effect of some backward references, then
they presented algorithms to recognize the frequent traversal patterns
from the maximal forward references obtained, which can be used to
predict the user’s future requests.

T. I. Ibrahim et al. [8] introduced a neural networks model to im-
plement the semantics-based Web page prediction. This model ex-
tracts the semantics of a Web page according to the keywords of
its URL anchor text. It employs these keywords as the input of the
neural network to construct the semantic network of URLs, and pre-
dicts user’s future requests based on the output of the neural network.
In order to reduce the influence of the ambiguity of key words, this
model builds a predictor for every different category of Web pages,
which enhances the prediction accuracy but also decreases the appli-
cability of this model.

M. Eirinaki et al. [9] proposed a novel Web personalization ap-
proach: Usage-based PageRank (UPR), which combines both Web
usage information and Web link structure information to conduct
Web page ranking and prediction. This approach employs UPR to
rank the Web pages in a relevant personalized navigational graph and
predicts the probable pages in terms of their ranking values. By us-
ing the number of times a page was visited and the number of times
the page was visited right after another page by previous users as the
biasing factors, UPR favors the pages and paths that have been ac-
cessed more frequently by previous users. Yong Zhen Guo et al. [10]
extended the UPR approach by introducing the access time duration
of each Web page as another biasing factor, which will yield more
accurate prediction.

Schechter [11] constructed an access path tree for the current user
and used the longest-match method to find a history path which
matched the user’s current navigational path. In this way the user’s
following access requests can be predicted, but the construction of
path trees and the match of history paths are expensive in terms of
both computing and storage.

Sarukkai [12] employed a 1st-order Markov model to analyze ac-
cess paths and make predictions. In this model, every Web page is

considered as a different state, and one state can transfer to another
state with a certain probability according to previous users’ access
paths. After all transition probabilities are computed from training
Web logs, the model can predict the most probable next page for the
current user in terms of the transition probability matrix. However,
when making predictions, this approach only takes users’ current
access requests into consideration but not the whole access paths,
which will influence the prediction accuracy. In order to deal with
this problem, higher-order Markov models [13] are proposed, which
take into account more states when computing the transition prob-
ability, and thus improve the prediction accuracy. However, the in-
crease of the order will increase the state space complexity. M. Desh-
pande et al. [14] discussed the shortcomings of higher-order Markov
models in predicting Web users’ browsing behaviors, and presented
three schemes to eliminate the state space complexity of higher-order
Markov models without influencing the performance.

A Hidden Markov Model (HMM) [15] is a dual-stochastic process
which is very popular for labeling sequences, one stochastic process
is an invisible Markov chain that describes the transition between
states (labels) while the other reflects the statistical relationship be-
tween states and observations. Xin Jin et al. [16] proposed a HMM-
based prefetching model in which they employed HMM to capture
and mine the latent concepts of information requirement implied by
Web users’ access paths, and then used the obtained information to
make semantic-based prefetching decisions.

In this paper we propose a CRF-based Web page prediction model
and compare its prediction accuracy with that of plain Markov Chain
models and Hidden Markov Models.

3 Conditional Random Fields

There are two predominant kinds of models for the tasks of se-
quence labeling and segmentation: generative models and discrimi-
native models. Hidden Markov Models (HMMs) are generative mod-
els with a directed graphical structure. Similar to other generative
models, HMMs define a joint probability distribution p(x, y) where
x and y are random variables over observation sequences to be la-
beled and their corresponding label sequences respectively. On ac-
count of the nature of modeling the joint probability distribution,
generative models have some major drawbacks. First of all, the pur-
pose of sequence labeling tasks is to label the given observations,
which corresponds to the conditional distribution p(y|x). Therefore,
the joint probability distribution p(x, y) defined by generative mod-
els is not the probability distribution of interest since the observation
sequence x is already known and visible in both training and testing
datasets. Secondly, in order to calculate the conditional distribution
p(y|x) from the joint distribution p(x, y), the marginal distribution
p(x) is required according to the Bayes rule. However, because usu-
ally the amount of the training data is limited, it is difficult to enumer-
ate all possible observation sequences, thus the calculation of p(x) is
only an approximation to the real distribution, which will decrease
the accuracy of the model [17]. Furthermore, the calculation of p(x)
also requires strict independence assumptions over observation ele-
ments, which is not always possible in reality since most observation
sequences in reality contain long-range dependencies and highly in-
teracting features between observation elements [1].

On the contrary, discriminative models directly model the condi-
tional distribution p(y|x), they do not need to model the visible ob-
servation sequences x, which results in the relaxation of unwarranted
independence assumptions over observation sequences. Moreover,
owing to the conditional nature, discriminative models are able to
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model arbitrary features of observation sequences, regardless of the
relationships between them. Therefore, discriminative models can
overcome the inherent shortcomings of generative models and ob-
tain higher labeling and prediction accuracy. The Maximum Entropy
Markov Models (MEMMs) [18] are discriminative models. Because
MEMMs conduct per-state normalization for the conditional proba-
bility of every next state given the current state and the observation
sequence, they achieve a local optimum which can cause the “label
bias” problem [1]. Conditional Random Fields (CRFs) are extensions
of MEMMs, they have all the advantages of MEMMs and avoid the
label bias problem. CRFs have a single exponential model for the
conditional probability of the entire label sequence given the obser-
vation sequence [1], therefore, each state needs not to preserve the
probability “mass” over its outgoing transitions and the whole model
can achieve a global optimum.

A Conditional Random Field is an undirected graphical model,
it defines a conditional probability distribution of a label sequence
Y , given an observation sequence X . All components Yi of Y are
assumed to range over a finite label set. Let G = (V, E) be a
graph where V denotes the set of vertices, E represents the set of
edges and Y = (Yv)v∈V , then (X, Y ) is a conditional random
field if, when conditioned on X , the random variables Yv obey the
Markov property with respect to the graph: p(Yv|X, Yw, w �= v) =
p(Yv|X, Yw, w ∼ v), where w ∼ v means that w and v are neigh-
bors in G [1]. Although theoretically the structure of a Conditional
Random Field can be an arbitrary undirected graph that obeys the
Markov property, for the tasks of labeling the most common graphi-
cal structure is an undirected linear chain of first-order among label
sequence Y , which can be seen in Figure 1 [19]. In our experiments,
we made use of this linear chain model for the implementation of
CRFs, where X = (x1, x2, · · · , xn) denotes an observation of a
user’s accessing session of length n and Y = (y1, y2, · · · , yn) de-
notes the corresponding label sequence of X . A linear chain CRF has
the form as below:

Pθ(Y |X) =
1

Z(X)
exp

[
T∑

t=1

(∑
i

λifi(yt−1, yt, X, t)

+
∑

j

μjsj(yt, X, t)

)]
.

(1)

Where fi (yt−1, yt, X, t) is a transition feature function between
the states (labels) at position t− 1 and t, while sj (yt, X, t) is a state
feature function of the state at position t. Z(X) is a global normal-
ization factor over all possible label sequences with the following
format:

Z(X) =
∑
Y

exp

[
T∑

t=1

(∑
i

λifi(yt−1, yt, X, t)

+
∑

j

μjsj(yt, X, t)

)]
.

(2)

The parameters θ = (λi, μj) can be estimated from training data
using many different approaches such as GIS[20], IIS[24] and L-
BFGS[22, 23]. After the parameters are trained, the Viterbi [21] al-
gorithm can be used to label the testing data and perform the predic-
tion.

Figure 1. First-order linear chain graphical structure of a Conditional
Random Field. The unshaded nodes indicate that the corresponding variables

are observed and not generated by the model.

4 Experiments

In this section we present a set of experiments that we performed to
evaluate the performance of using CRFs in Web page prediction. We
compared the prediction results of CRF-based approaches to that of
plain Markov Chain-based and Hidden Markov Model-based meth-
ods. The experimental results show an overall enhancement in the
prediction accuracy by using CRF-based measures.

4.1 Experimental Dataset and Preprocessings

We used the publicly accessible msnbc.com anonymous Web data
[26] as the dataset in our experiments. The msnbc dataset is obtained
from the Web logs of www.msnbc.com and contains page visits of
users who visited this website on September 28, 1999. All the user
visits are recorded in session format at the level of page categories
defined by the website administrator, such as weather, health, sports
and so on. There are 17 different page categories in this dataset which
can also be treated as 17 distinct pageviews. In addition, each page
category was assigned one integer ranging from 1 to 17, for example,
the category weather was assigned the integer 8 while the category
sports was assigned the integer 12. An example of a user session in
this dataset is: 6 9 4 4 4 10 3 3 10 5 10 4 4. There are 989,818 user
sessions with more than one pageview of this kind in this dataset.

We also performed a preprocessing to remove the consecutive rep-
etitions of a same page from all of the user sessions. For instance, af-
ter this preprocessing, the sample user session above will be reduced
to: 6 9 4 10 3 10 5 10 4. Then we randomly selected 50,000 distinct
sessions with length more than 5 and less than 100 from the prepro-
cessed dataset and divided them equally into ten subsets, which will
be used to perform 10-fold cross validation in our experiments.

Furthermore, we labeled the sessions in both training data and test-
ing data. We treated each user session as an observation sequence. In
the Web page prefetching scenario, we can use every observation
element’s subsequent element as its label. Therefore, since each ob-
servation element’s subsequent element can be any of the 17 page
categories, there are 17 different labels in total.

4.2 Experimental Setups

In our experiments we created seven different prediction methods to
compare the Web page prediction accuracy of plain Markov Chains
and Hidden Markov Models with that of Conditional Random Fields.
The first two methods are the first-order plain Markov Chain (re-
ferred to as 1st-PMC) and the second-order plain Markov Chain (re-
ferred to as 2nd-PMC). We trained the 1st-PMC and 2nd-PMC to
obtain their state transition probability matrices, and then labeled the
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testing dataset according to the entries of the corresponding transi-
tion matrix.

We implemented the 1st- and 2nd-order Hidden Markov Models
as well, which will be referred to as 1st-HMM and 2nd-HMM re-
spectively. All parameters of a HMM model can be estimated by the
Forward-Backward algorithm [15]. However, because in our case the
training is fully supervised, we can use a statistical method, which is
quicker and more accurate, to acquire the parameters λ = (π, A, B),
where π is the initial probability distribution of states, A is the state
transition probability matrix and B is the observation probability dis-
tribution matrix. After training, the Viterbi algorithm is used to label
the testing dataset in terms of the trained model.

For the implementation of the Conditional Random Fields, we use
the CRF++ toolkit [27]. CRF++ is a simple, customizable implemen-
tation of 1st-order Conditional Random Fields which ensures fast
training by using L-BFGS. We used three different CRF++ feature
templates in our experiments. In the first template (referred to as
CRF0), we define the current observation as the only unigram fea-
ture; in the second template (CRF1), we use the current and previous
one observation and their combination as the unigram features; for
the third template (CRF2), we use the current and previous two ob-
servations and their combinations as the unigram features. All these
three templates share a same bigram feature, which will automati-
cally generate a combination of the current label and previous label
as the feature function. The more abundant and detailed features are
used, the more powerful CRF models can be attained. Therefore, we
expect that CRF2 has the best performance out of these three CRF
models. Then we use CRF++ to label the testing dataset by employ-
ing the trained models.

4.3 Experimental Results

In our experiments we performed the 10-fold cross validation to eval-
uate the experimental results. We used the aforementioned seven
methods to train the training dataset and obtained seven correspond-
ing models, which are applied to label the testing dataset respectively
later. For each observation in the testing data we predicted a series of
labels that are ranged in a descending order according to their prob-
abilities. Then we evaluated the prediction accuracy of these seven
methods by using three different accuracy measures. The first mea-
sure is the “top-1 accuracy”, in which we used the first label, which
is also the most probable label, of the predicted label series as the
current observation’s label. The accuracy is simply the ratio of the
number of correctly predicted labels to the total number of predicted
labels. The second measure is the “top-3 accuracy”, in this measure
we use the top-3 most probable labels of the predicted label series to
form a candidate label set for the current observation, if the real label
of the current observation is in this candidate label set, we then con-
sider this labeling as a “correct labeling”. The third measure “top-
5 accuracy” has the similar definition to the “top-3 accuracy”. The
reason we chose to measure the “top-3 accuracy” and the “top-5 ac-
curacy” is because they resemble what happens in reality better, for
instance, usually the prefetching systems will predict 3 or 5 possible
“next” pages for the current user. The statistically significant predic-
tion accuracies of these three accuracy measures for the seven meth-
ods are depicted in Figure 2, Figure 3 and Figure 4 respectively.

From the results we can see that the 1st-PMC model has the worst
performance in all of the seven models for all three accuracy met-
rics. Among the four non-CRF models, the second-order models
achieve higher prediction accuracies than their corresponding first-
order models, while the 2nd-HMM outperforms the other three non-

CRF models in all of the three accuracy measures. When compared
CRF-based models with non-CRF models, we observed that although
the “top-1 accuracy” of CRF0 is slightly lower than that of the
second-order non-CRF models (that is, 2nd-PMC and 2nd-HMM),
it behaves much better in both top-3 and top-5 accuracy measures.
In the “top-1 accuracy” measure, CRF1 can achieve slightly better
performance than 2nd-HMM, while CRF2 outperforms 2nd-HMM
undoubtedly. In addition, all three CRF-based models provide higher
accuracy than the 2nd-HMM in both “top-3 accuracy” and “top-5
accuracy”. Finally, when compared the models of CRF0, CRF1 and
CRF2, we found out that the more detailed features a CRF model
used, the higher prediction accuracy it can obtain. Moreover, CRF2
has the best performance out of the three CRF-based models in all of
the three accuracy measures, which is in accordance with our expec-
tation.

Figure 2. Top-1 accuracies for the 7 methods.

Figure 3. Top-3 accuracies for the 7 methods.

It is obvious from our experimental results that the selection of
features is crucial to the performance of CRFs models. A good pre-
diction model has poor performance without good features, while a
less powerful prediction model may also perform well with a set of
deliberately chosen features [25]. In our experiments, we only used
the current and previous observations as the unigram features, more
useful features can be incorporated to enhance the prediction accu-
racy, i.e., “the length of the observation sequence”. Moreover, no-
tice that although all the CRF-based models in our experiments are
of first order, their performance (except that of CRF0 in the “top-1
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Figure 4. Top-5 accuracies for the 7 methods.

accuracy”) have already exceeded that of the second-order Hidden
Markov Models, we can consider that Conditional Random Fields
are superior models for Web page prediction than Hidden Markov
Models.

However, we noticed that the training of a CRF model is expensive
and thus slower than that of PMC and HMM models, but once it is
trained, its performance is robust and the speed of labeling the testing
data is very fast, which is comparable to that of the other two models.
Therefore, the CRF-based Web page prefetching can be efficiently
applied online.

5 Conclusion and Future Work
In this paper, we discussed the main differences between generative
models and discriminative models and showed through experimenta-
tion that the Conditional Random Fields can be effectively applied in
the task of Web page prediction. The ability to model the long range
dependencies among observation elements and the combination of
arbitrary and overlapping features from observation sequences al-
low Conditional Random Fields to overcome the inherent disadvan-
tages of the most popular Web page prediction models such as plain
Markov Chains and Hidden Markov Models, and thus produce much
more accurate predictions. The positive experimental results also re-
vealed that by using richer features, the CRF-based prediction mod-
els can achieve better performance.

We should point out that the training of Conditional Random
Fields converges considerably slowly when compared to HMMs and
plain Markov Chains. The training complexity of a CRF is quadratic
with respect to the number of labels. When the number of labels is
very large, the training of a CRF may become very expensive and
even intractable. Therefore, in our future work, we will focus on deal-
ing with the problem of using CRFs to perform Web page prediction
in a larger dataset with many thousands of distinct pages.
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