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We consider the problem of enumerating integer tetrahedra of fixed perimeter (sum 
of side-lengths) and/or diameter (maximum side-length), up to congruence. As we will 
see, this problem is considerably more difficult than the corresponding problem for 
triangles, which has long been solved. We expect there are no closed-form solutions to 
the tetrahedron enumeration problems, but we explore the extent to which they can be 
approached via classical methods, such as orbit enumeration. We also discuss algorithms 
for computing the numbers, and present several tables and figures that can be used to 
visualise the data. Several intriguing patterns seem to emerge, leading to a number of 
natural conjectures. The central conjecture is that the number of integer tetrahedra of 
perimeter n, up to congruence, is asymptotic to n5/C for some constant C ≈ 229000.

© 2022 Elsevier B.V. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Enumeration via Burnside’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Computation and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4. Observations from the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Declaration of competing interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1. Introduction

Geometry and combinatorics have many natural meeting points. Arguably the most ancient known example is the ap-
plication of right-angled integer triangles in Babylonian architecture and agriculture. The classification of all such right 
triangles is recorded in Book X of Euclid’s Elements. Enumeration of arbitrary integer triangles goes back at least to the 
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Fig. 1. Two integer tetrahedra. The one on the left is tri-rectangular. The one on the right is invariant under a 120◦ rotation about a vertical axis.

1979 paper of Jordan, Walch and Wisner [11], and we have the following elegant result of Honsberger [8], which has been 
proved in a variety of ways [4–8,10]:

Theorem. The number of integer triangles with perimeter n, up to congruence, is the nearest integer to n2

48 if n is even, or to (n+3)2

48 if n
is odd.

Two of the most natural extensions of this triangle enumeration problem are to consider integer polygons (increasing 
the number of sides), or integer tetrahedra (moving up a dimension). The former was treated in [4], and the current article 
considers the latter. Our main guiding problem is the following. By an integer tetrahedron we mean a (non-degenerate) 
tetrahedron whose sides are all of integer length, as in Fig. 1. The perimeter of a tetrahedron is the sum of its six side-
lengths.

Problem 1. Calculate the number tn of integer tetrahedra with perimeter n, up to congruence: i.e., combinations of rotations, 
translations and reflections.

One might hope that tn is given by a similar formula to the triangle sequence in Honsberger’s Theorem above. As we 
will see, however, this is very far from the truth.

Philip Benjamin has computed tn for n ≤ 30, but as far as we know has not published his methods; see [1, Sequence 
A208454]. Sascha Kurz [12] has considered the related problem of enumeration by diameter, defined to be the maximum of 
the six side-lengths:

Problem 2. Calculate the number dt of integer tetrahedra with diameter d, up to congruence.

Kurz has computed dt for d ≤ 1000 in [12]; see also [1, Sequence A097125]. The article [12] gives a lot of detail about 
Kurz’s methods and algorithms. No formula is given or conjectured, though an exact expression is given for a related set of 
(orbits of) matrices; this leads to a conjectural asymptotic formula, as we discuss in Sections 4.1 and 4.5.

It is not hard to show that the number of integer triangles with diameter d, up to congruence, is equal to 
⌊

(d+1)2

4

⌋
; see 

[1, Sequence A002620].
There is also of course the following natural problem, combining perimeter and diameter:

Problem 3. Calculate the number dtn of integer tetrahedra with perimeter n and diameter d, up to congruence.

Clearly a solution to Problem 3 would yield solutions to Problems 1 and 2, since

tn =
∑

d

dtn and dt =
∑

n

dtn.

The non-zero terms in these sums occur for � n
6 � ≤ d ≤ �n−3

3 	 and 3d + 3 ≤ n ≤ 6d, as we will show in Lemma 3.2.
Apart from this introduction, and a brief conclusion, the paper contains three further sections. In Section 2 we set up 

some ideas that (in principle) allow the calculation of tn , dt and dtn via Burnside’s Lemma, and we make some partial 
progress by giving explicit formulas for some of the relevant parameters. In Section 3 we discuss algorithms for comput-
ing the numbers tn , dt and dtn , and give several tables and graphs of computed values; more data can be found at [3]. 
In Section 4 we explore some intriguing patterns that seem to emerge from an examination of the data. A number of 
conjectures/open problems are stated. We hope that these provide inspiration for future studies.
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Fig. 2. The graph G ∈ G (centre), as well as σ · G for various permutations σ from S4.

Fig. 3. Graphs from G representing the tetrahedra pictured in Fig. 1.

2. Enumeration via Burnside’s Lemma

In this section we focus on the numbers tn , though all we say can easily be adapted to work for the numbers dt or dtn
instead. In Remark 2.13 we indicate the modifications needed for these.

Let G be the set of all edge-labelled graphs whose underlying unlabelled graph is the complete graph on vertex set 
{1, 2, 3, 4}, and whose labels all belong to N = {1, 2, 3, . . .}. For G ∈ G , we denote the label of the edge {i, j} by G(i, j) =
G( j, i). The symmetric group S4 has a natural action on G , denoted (σ , G) �→ σ · G , and induced by permuting the vertices. 
For G ∈ G and σ ∈ S4, and for distinct i, j ∈ {1, 2, 3, 4}, we have

(σ · G)(i, j) = G(σ−1(i),σ−1( j)). (2.1)

For example, Fig. 2 illustrates the action of the permutations (2, 3), (1, 2, 3), (1, 2, 4, 3) and (1, 4)(2, 3), written in standard 
cycle notation.

An integer tetrahedron T may be represented by a graph G from G as follows. Choose an ordering 1, 2, 3, 4 on the corners 
of T , and let the label of the edge {i, j} from G be the corresponding side-length from T . Different orderings on the vertices 
typically lead to different graphs, so that T may be represented by up to 24 such graphs. In fact, these graphs representing 
T are precisely those belonging to the orbit of G under the action of S4 given in (2.1). For example, the tetrahedra from 
Fig. 1 may be represented by the graphs in Fig. 3; the orbits of these graphs have size 24 and 4, respectively. It is clear that 
two tetrahedra are congruent if and only if they are represented by the same set of graphs from G .

Not every graph from G corresponds to a tetrahedron in the above manner. For example, we claim that this is the case 
for the two graphs pictured in Fig. 4. This is clear for the left-hand graph, as there is no triangle with edges (1, 1, 2). 
However, the right-hand graph cannot be ruled out so easily, as the triples (7, 7, 7) and (7, 4, 4) do indeed correspond to 
triangles. Rather, the problem here is that if one tries to fold the “net” shown in Fig. 5 (left) into a tetrahedron, then the 
tips of the three (7, 4, 4) triangles do not meet.

For n ∈N , let Tn be the set of graphs from G corresponding to some tetrahedron of perimeter n. The number of integer 
tetrahedra of perimeter n, up to congruence, is then given by the number tn = |Tn/S4| of orbits of Tn under the action of 
S4 given in (2.1). Burnside’s Lemma (cf. [2, p. 246]) then gives

tn = |Tn/S4| = 1

24

∑
fix(σ ). (2.2)
σ∈S4

3
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Fig. 4. Graphs from G not corresponding to tetrahedra.

Fig. 5. Attempting to construct a tetrahedron from the graph in Fig. 4 (right).

Here, for σ ∈ S4, fix(σ ) is the cardinality of the set

Fix(σ ) = {G ∈ Tn : σ · G = G}. (2.3)

To enumerate tetrahedra up to rotations and translations only, we would be looking at orbits under the restricted action of 
the alternating group A4 ⊆ S4, since even and odd permutations correspond to rotations and reflections, respectively. The 
number t′

n of integer tetrahedra of perimeter n, up to this kind of restricted congruence, is given by

t′
n = |Tn/A4| = 1

12

∑
σ∈A4

fix(σ ). (2.4)

Thus, to calculate the numbers tn and t′
n , it is enough to identify the set Tn , and calculate the parameters fix(σ ) for each 

σ ∈ S4. For the former, we have the following:

Proposition 2.5. The set Tn consists of all graphs G from G whose edge-labels, as shown in Fig. 2 (centre), satisfy:

(T1) A + B + C + a + b + c = n,
(T2) A + B + C > 2 max(A, B, C),
(T3) A + b + c > 2 max(A, b, c),
(T4) a + B + c > 2 max(a, B, c),
(T5) a + b + C > 2 max(a, b, C),
(T6) (a2 − B2 − c2 + 2x1x2)

2 < 4Y1Y2 , where

• x1 = A2+B2−C2

2A ,

• x2 = A2+c2−b2

2A ,
• Y1 = B2 − x2

1 ,
• Y2 = c2 − x2

2 .

Proof. First note that three positive real numbers x, y, z can be the sides of a triangle if and only if the sum of the smaller 
two is greater than the largest; this is equivalent to x + y + z > 2 max(x, y, z). Thus, consulting Fig. 2, it is clear that Tn is a 
subset of

T ′
n = {

G ∈ G : (T1)–(T5) hold
}
.

Now consider a graph G from T ′
n , with edges labelled as in Fig. 2. Then G corresponds to a tetrahedron if and only if the 

following procedure can be carried out:

• Begin with the quadrilateral shown in Fig. 6 (left).
• Keeping the (A, B, C)-triangle fixed in place, fold along the x-axis by some angle 0 < θ < π until the free tips of the two 

triangles are a units apart, as shown in Fig. 6 (middle). (We have strict inequalities for θ to ensure that the tetrahedron 
is not degenerate.)
4
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Fig. 6. Creating an integer tetrahedron; see the proof of Proposition 2.5 for further details.

Fig. 6 (right) displays the two original triangles, as well as the result of folding by the angle θ = π , and defines three 
points, P , Q , R ∈R2. Let the coordinates of these points be P = (x1, y1), Q = (x2, y2) and R = (x2, −y2). Also, put Y1 = y2

1
and Y2 = y2

2. It is easy to check that x1, x2, Y1, Y2 are as given in (T6): e.g., consider P as the intersection of the circles 
x2 + y2 = B2 and (x − A)2 + y2 = C2.

We claim that the above folding procedure can be carried out if and only if |P Q | < a < |P R|. Indeed, if we denote by 
Rθ ∈ R3 the tip of the moving triangle after folding by the angle 0 ≤ θ ≤ π , then Rθ = (x2, −y2 cos θ, y2 sin θ). It follows 
that |P Rθ |2 = (x1 − x2)

2 + y2
1 + y2

2 + 2y1 y2 cos θ is a smooth, decreasing function of 0 ≤ θ ≤ π .
With the claim established, it remains to observe that the inequality |P Q | < a < |P R| is equivalent to that in (T6), as

|P Q | < a < |P R| ⇔ |P Q |2 < a2 < |P R|2
⇔ (x1 − x2)

2 + (y1 − y2)
2 < a2 < (x1 − x2)

2 + (y1 + y2)
2

⇔ y2
1 + y2

2 − 2y1 y2 < a2 − (x1 − x2)
2 < y2

1 + y2
2 + 2y1 y2

⇔ −2y1 y2 < a2 − (x1 − x2)
2 − y2

1 − y2
2 < 2y1 y2

⇔ (a2 − (x1 − x2)
2 − y2

1 − y2
2)

2 < 4y2
1 y2

2

⇔ (a2 − B2 − c2 + 2x1x2)
2 < 4y2

1 y2
2. �

Remark 2.6. Items (T4) and (T5) from Proposition 2.5 are actually unnecessary. Indeed, given (T1)–(T3), and in the notation 
of the above proof (cf. Fig. 6), (T6) is equivalent to the inequality |P Q | < a < |P R|. This ensures that the triples (a, B, c) and 
(a, b, C) correspond to triangles, which implies (T4) and (T5).

Alternative formulations of (T6) also exist. On [12, p. 3], Kurz attributes to Menger [13] the equivalent inequality involving 
a determinant:∣∣∣∣∣∣∣∣∣∣

0 A2 C2 b2 1
A2 0 B2 c2 1
C2 B2 0 a2 1
b2 c2 a2 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
> 0.

See also [14] for an elementary proof of this inequality, and a discussion of its history.

Now that we have characterised the set Tn , it remains to calculate the values of fix(σ ) for each σ ∈ S4. By symmetry we 
only have to do this for σ being one of the following:

(i) id4,
(ii) (1, 2, 3),

(iii) (1, 4)(2, 3),
(iv) (2, 3),
(v) (1, 2, 4, 3).

In these cases, the number of elements of S4 with the same values of fix(σ ) are, respectively, (i) 1, (ii) 8, (iii) 3, (iv) 6, (v) 6. 
Moreover, Fix(σ ) may be characterised as the graphs G from Tn whose labels (as in Fig. 2) satisfy the following constraints, 
respectively:
5
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(i) NA,
(ii) A = B = C and a = b = c,

(iii) B = b and C = c,
(iv) B = C and b = c,
(v) A = a and B = C = b = c.

In case (i) we have fix(id4) = |Tn|. The next two results give exact formulas for fix(σ ) when σ has type (ii) or (v). We do 
not currently have formulas for types (i), (iii) or (iv); nor do we know if “neat” such formulas exist.

Lemma 2.7. If σ = (1, 2, 3), then

fix(σ ) =
{

0 if n �≡ 0 (mod 3)⌊ n
3+√

3

⌋
if n ≡ 0 (mod 3).

Proof. As noted above, Fix(σ ) consists of the graphs from Tn whose edge-labels (as in Fig. 2) satisfy A = B = C and 
a = b = c. Such a graph corresponds to a tetrahedron of the form shown in Fig. 7 (left). If such a tetrahedron exists, 
then from n = 3A + 3a we must have n ≡ 0 (mod 3), and a = n

3 − A. Then we note that (T2) is trivial, while (T3) is 
equivalent to the assertion that there is an (A, a, a)-triangle; the latter is equivalent to A < 2a, and hence by integrality to 
A + 1 ≤ 2a = 2n

3 − 2A. Keeping in mind that A is an integer, the latter gives

A ≤
⌊

2n − 3

9

⌋
. (2.8)

For (T6), we have x1 = x2 = A
2 , Y1 = 3A2

4 and Y2 = a2 − A2

4 , and the inequality in (T6) becomes A4

4 < 3A2(a2 − A2

4 ). Rear-

ranging, and remembering that A, a > 0, this gives A <
√

3a = √
3( n

3 − A), and so A < n
3+√

3
. Since A is an integer, and since 

n
3+√

3
is irrational, it follows that

A ≤
⌊

n

3 + √
3

⌋
. (2.9)

One may show that 2n−3
9 ≥ n

3+√
3

⇔ n ≥ 31, and also that 
⌊

2n−3
9

⌋
= ⌊ n

3+√
3

⌋
if n ≤ 30 is a multiple of 3. The result then 

follows from (2.8) and (2.9). �
Lemma 2.10. If σ = (1, 2, 4, 3), then

fix(σ ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if n �≡ 0 (mod 2)⌊ n
4+4

√
2

⌋
if n ≡ 0 (mod 4)⌊n+2+2

√
2

4+4
√

2

⌋
if n ≡ 2 (mod 4).

Proof. This time Fix(σ ) consists of the graphs from Tn whose edge-labels (as in Fig. 2) satisfy A = a and B = C = b = c. Such 
a graph corresponds to a tetrahedron of the form shown in Fig. 7 (right). If such a tetrahedron exists, then from n = 2A +4B
we must have n ≡ 0 (mod 2), A ≡ n

2 (mod 2) and B = n−2A
4 . Then we note that (T2) and (T3) are both equivalent to A < 2B , 

and hence to A + 1 ≤ 2B = n
2 − A. The latter gives

A ≤
⌊

n − 2

4

⌋
. (2.11)

Rather than (T6), it is more convenient to work with the equivalent |P Q |2 < a2 < |P R|2 from the proof of Proposition 2.5; 
cf. Fig. 6. Since P = Q (and remembering that A = a, etc.), this is equivalent to A2 < 4B2 − A2, which gives A <

√
2B = n−2A

2
√

2
, 

and ultimately

A ≤
⌊

n

2 + 2
√

2

⌋
. (2.12)

This time, n−2
4 ≥ n

2+2
√

2
⇔ n ≥ 12, and also 

⌊
n−2

4

⌋
= ⌊ n

2+2
√

2

⌋
if n ≤ 10 is even. Thus, if we write K = ⌊ n

2+2
√

2

⌋
, then it 

follows from (2.11) and (2.12) that fix(σ ) is equal to the cardinality of the set

X = {
A ∈N : A ≤ K , A ≡ n (mod 2)

}
.
2

6
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Fig. 7. Tetrahedra from the proofs of Lemmas 2.7 and 2.10.

Now,

|X | =
{

� K
2 	 if n

2 ≡ 0 (mod 2): i.e., if n ≡ 0 (mod 4)

� K+1
2 	 if n

2 ≡ 1 (mod 2): i.e., if n ≡ 2 (mod 4).

The result then follows from the definition of K , and the fact that 
⌊ �x	

2

⌋ = ⌊ x
2

⌋
for real x. �

As noted above, we are currently unable to calculate fix(σ ) for σ of types (i), (iii) and (iv). It is possible that types (iii)
and (iv) could be treated by more elaborate versions of the arguments given in Lemmas 2.7 and 2.10. Calculated values of 
all fix(σ ) parameters for 1 ≤ n ≤ 100 are given in Table 5; see also Figs. 17–19. If one could calculate fix(id4) = |Tn|, this 
would have important consequences for the asymptotics of tn itself; see Section 4.1.

Remark 2.13. The arguments of this section can be modified to calculate the numbers dt or dtn . Consider the following 
condition on a graph G from G , as shown in Fig. 2 (centre):

(T1)′ max{A, B, C, a, b, c} = d.

Then the set dT of graphs from G corresponding to integer tetrahedra of diameter d are precisely those satisfying (T1)′ and 
(T2)–(T6); cf. Proposition 2.5. The set dTn = Tn ∩ dT of graphs from G corresponding to integer tetrahedra of perimeter n
and diameter d are precisely those satisfying (T1)′ and (T1)–(T6). Then

dt = |dT /S4| and dtn = |dTn/S4|
are given by counting orbits of the action of S4 given in (2.1). We also have the numbers dt′ and dt′

n , counting tetrahedra 
(of relevant parameters) up to rotations only, and these are given in terms of the restricted action of A4.

3. Computation and data

In the previous section we gave a method for (in principle) computing the numbers tn , dt and dtn . Given that we are cur-
rently unable to give explicit formulas for the fix(σ ) parameters in certain cases, and hence for the tn , dt and dtn sequences 
themselves, we now turn to some computations to make further progress. In this section we discuss algorithms/code, and 
give several tables and graphs of calculated values. In the next section we make some observations and conjectures based 
on the computational data.

3.1. Enumeration algorithms

To compute or enumerate all tetrahedra of a given perimeter n, we identify the graph G from Fig. 2 with the 6-tuple [
(A, a), (B, b), (C, c)

]
. This is clearly a tuple over {1, . . . , n}, though we will see in Lemma 3.2 that the entries of the tuple 

belong to a much smaller range; at this point, it is obvious at least that no entry could be bigger than n − 5. The orbits of 
G (as in Fig. 2) under the action of S4 given in (2.1) correspond to the following tuples:[

(A,a), (B,b), (C, c)
]
,

[
(A,a), (b, B), (c, C)

]
,

[
(a, A), (B,b), (c, C)

]
,

[
(a, A), (b, B), (C, c)

]
,[

(C, c), (A,a), (B,b)
]
,

[
(c, C), (A,a), (b, B)

]
,

[
(c, C), (a, A), (B,b)

]
,

[
(C, c), (a, A), (b, B)

]
,

7
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[
(B,b), (C, c), (A,a)

]
,

[
(b, B), (c, C), (A,a)

]
,

[
(B,b), (c, C), (a, A)

]
,

[
(b, B), (C, c), (a, A)

]
,[

(A,a), (C, c), (B,b)
]
,

[
(A,a), (c, C), (b, B)

]
,

[
(a, A), (c, C), (B,b)

]
,

[
(a, A), (C, c), (b, B)

]
,[

(B,b), (A,a), (C, c)
]
,

[
(b, B), (A,a), (c, C)

]
,

[
(B,b), (a, A), (c, C)

]
,

[
(b, B), (a, A), (C, c)

]
,[

(C, c), (B,b), (A,a)
]
,

[
(c, C), (b, B), (A,a)

]
,

[
(c, C), (B,b), (a, A)

]
,

[
(C, c), (b, B), (a, A)

]
.

(3.1)

Each of these can be alternatively obtained from 
[
(A, a), (B, b), (C, c)

]
by the action of a signed permutation τ of the set 

{1, 2, 3}. Roughly speaking, the non-signed part of τ tells us how to move the pairs (A, a), (B, b) and (C, c), and the signed 
part tells us whether (X, x) is listed in the final arrangement as (X, x) or is flipped to (x, X). Moreover, examining (3.1), 
only those signed permutations with an even number of flips occur. This means that we are dealing with an action of the 
Coxeter group of type D3, which is well-known to be isomorphic to the symmetric group S4 (type A3). For more on Coxeter 
groups, see [9].

The most obvious algorithm for creating the set Tn would be to take all 6-tuples 
[
(A, a), (B, b), (C, c)

]
over {1, . . . , n −5}, 

and keep those satisfying conditions (T1)–(T6) from Proposition 2.5. Once we have the set Tn , we can quickly compute the 
tuples fixed under the action of permutations σ from S4 of types (i)–(v), and thereby compute tn = 1

24

∑
σ fix(σ ).

On the other hand, since we are ultimately concerned with counting orbits, we do not need to store all tuples from Tn; 
we only need to store a single representative: e.g., the lex-greatest such tuple.

Some simple geometrical considerations allow us to reduce the search space, and also lead to other shortcuts.

Lemma 3.2. If an integer tetrahedron has perimeter n and diameter d, then⌈n

6

⌉
≤ d ≤

⌊n − 3

3

⌋
or equivalently 3d + 3 ≤ n ≤ 6d.

Proof. It suffices to prove the second system of inequalities, and we note that n ≤ 6d is clear.
Consider the graph G pictured in Fig. 2, and assume by symmetry that d = A. From the (A, B, C)- and (A, b, c)-triangles 

we obtain B + C ≥ A + 1 and b + c ≥ A + 1, and so

n = A + (B + C) + a + (b + c) ≥ A + (A + 1) + 1 + (A + 1) = 3d + 3. �
Remark 3.3. For fixed d, the maximum value of n = 6d occurs uniquely, of course, for the equilateral tetrahedron [
(d, d), (d, d), (d, d)

]
. The minimum value of n = 3d + 3 corresponds to 

[
(1, d), (1, d), (1, d)

]
, for example, a very “thin” 

tetrahedron of the form shown in Fig. 7 (left). In general, other tetrahedra have n = 3d + 3: e.g., 
[
(1, d), (2, d − 1), (2, d − 1)

]
for d ≥ 3.

Remark 3.4. Although every edge of an integer tetrahedron of perimeter n is bounded above by �n−3
3 	, it is not true that 

� n
6 � is a lower bound for all edges. Indeed, we have the very “thin” tetrahedra 

[
(1, d), (1, d), (1, d)

]
and 

[
(d, d), (d, d), (1, 1)

]
, 

as in Fig. 7.

Similar considerations apply to the triangular faces:

Lemma 3.5. If an integer tetrahedron has perimeter n and maximum face-perimeter M, then⌈n

2

⌉
≤ M ≤

⌊2n − 3

3

⌋
or equivalently

⌈3M + 3

2

⌉
≤ n ≤ 2M.

Proof. It suffices to show that 3M+3
2 ≤ n ≤ 2M . To do so, consider the graph G pictured in Fig. 2, assuming by symmetry that 

M = A + B + C . Adding the perimeters of all four faces gives twice the perimeter of the tetrahedron. The first consequence 
of this is that 2n ≤ 4M: i.e., n ≤ 2M . The second consequence (also using b + c ≥ A + 1, etc., from the other triangular faces) 
is that

2n = (A + B + C) + (A + b + c) + (B + a + c) + (C + a + b)

≥ (A + B + C) + (A + A + 1) + (B + B + 1) + (C + C + 1) = 3(A + B + C) + 3 = 3M + 3,

which gives n ≥ 3M+3
2 . �

With the above considerations in mind, a simple algorithm for calculating a set of representatives of dTn is as follows. 
Here we write d = A to keep the notation as in Fig. 2. Roughly speaking, we create tetrahedra as in Fig. 6, with the diameter 
on the x-axis.
8
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(I) Define the set S = ∅.

(II) Create the set of all triangles with maximum side A( = d) and with perimeter at most 
⌊

2n−3
3

⌋
. (This is fairly routine, 

so the details are omitted.)
(III) Then for each pair (A, B, C) and (A, b, c) of such triangles, we set a = n − (A + B + C + b + c).
(IV) If a ≤ A and if the tuple T = [

(A, a), (B, b), (C, c)
]

satisfies condition (T6) from Proposition 2.5, we add to the set S
the lex-greatest representative of T from the list (3.1).

The number dtn = Atn is then the size of the set S created. Summing over all d (or n) gives tn (or dt), respectively. There 
are many easy ways to simplify the above. For example, the sixth entry of the tuple 

[
(A, a), (B, b), (C, c)

]
does not need to 

be stored, as it can be inferred from the others; neither do we need to store the first entry as this is always d (this is why 
we chose to store the lex-greatest representative).

We carried out the above algorithm in a variety of languages. We were able to calculate tn up to n = 1100 before 
running out of memory on standard laptops (even for single values of d). It was around this stage in our investigations that 
we discovered Kurz’s article [12]. We regret to say that the “integral” rather than “integer” in his title defeated our searching 
abilities. Additionally, since we were initially interested only in the tn sequence, we initially found only Sequence A208454 
on the OEIS [1], but not A097125, which contains many terms in the dt sequence.

The most significant advantage of Kurz’s algorithm for enumeration by diameter is that it does not require the creation 
and storage of vast numbers of tuples. Rather, it moves through “tuple space” in such an orderly fashion that each canonical 
tuple is visited once, meaning that these only have to be counted rather than stored. Our current algorithms are modi-
fications of Kurz’s, implemented in C, and with a number of optimisations, including parallelisation and use of the GNU 
Multiple Precision Arithmetic Library to store and manipulate large integers. All of our calculations of the numbers dt match 
those given by Kurz, though we have gone somewhat further; see Table 8.

3.2. Values

So far we have calculated tn for every 1 ≤ n ≤ 3000, and for several other values up to n = 20000. Various tables and 
figures in this section summarise some of these calculations, but more complete lists are available at [3]. Some of the tables 
below also include values of dt , dtn and t′

n (tetrahedra up to rotations and translations only), and also fix(σ ) for certain 
permutations σ ∈ S4. (More extensive tables containing values of dt are given by Kurz [12].) For convenience of reference, 
here is a summary of the content of the tables and figures given in this section (more are given in Section 4, and we note 
that some of the tables in the current section also include additional parameters defined in Section 4):

Location Numbers Range Comments

Table 1 tn 1 ≤ n ≤ 200
Table 2 tn 1 ≤ n ≤ 10000 by hundreds
Table 3 dtn 1 ≤ n ≤ 50
Table 4 dtn 1 ≤ n ≤ 200
Table 5 fix(σ ), tn , t′

n 1 ≤ n ≤ 100
Table 7 tn 1 ≤ n ≤ 20000 by thousands
Table 8 dt 1 ≤ d ≤ 2000 by hundreds

Fig. 8 tn 1 ≤ n ≤ 30
Fig. 9 tn 1 ≤ n ≤ 200
Fig. 10 tn 1 ≤ n ≤ 200 log-log plot
Fig. 11 tn 1 ≤ n ≤ 10000 by hundreds
Fig. 12 dtn 1 ≤ n ≤ 2000 heat map
Fig. 13 dtn n = 100 and 200
Fig. 14 dtn n = 10000 and discrete derivative
Fig. 15 dtn d = 50 and 100
Fig. 16 dtn d = 1000 and discrete derivative
Figs. 17–19 fix(σ ) 1 ≤ n ≤ 100 σ ∈ S4

4. Observations from the data

The computational data presented in Section 3 has allowed us to discover some interesting patterns, and has led to 
a number of natural conjectures, which we discuss in the current section. We do not mean to imply that the following 
discussion is exhaustive. We hope that other researchers may be able to shed light on some of our conjectures, and make 
further discoveries.

4.1. Asymptotics

First and foremost, we had hoped that the computed values of tn might have suggested an obvious formula, perhaps 
after consultation with the OEIS [1]. However, this regrettably was not the case. The “bumpy” nature of the tn sequence, 
9
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Table 1
Calculated values of tn .

n tn

1 0
2 0
3 0
4 0
5 0
6 1
7 0
8 0
9 1
10 1

11 1
12 3
13 2
14 3
15 6
16 6
17 7
18 12
19 11
20 18

21 21
22 25
23 31
24 38
25 46
26 56
27 66
28 76
29 90
30 117

31 123
32 151
33 175
34 196
35 234
36 264
37 297
38 346
39 391
40 448

n tn

41 492
42 568
43 630
44 702
45 797
46 884
47 977
48 1089
49 1217
50 1338

51 1469
52 1624
53 1771
54 1970
55 2146
56 2343
57 2579
58 2782
59 3042
60 3322

61 3586
62 3912
63 4221
64 4568
65 4953
66 5339
67 5731
68 6204
69 6657
70 7169

71 7683
72 8230
73 8857
74 9446
75 10095
76 10846
77 11513
78 12345
79 13125
80 13969

n tn

81 14903
82 15790
83 16811
84 17854
85 18940
86 20107
87 21261
88 22511
89 23831
90 25251

91 26631
92 28173
93 29744
94 31341
95 33116
96 34849
97 36696
98 38695
99 40619
100 42817

101 44951
102 47257
103 49641
104 52008
105 54685
106 57310
107 60046
108 62944
109 65896
110 69029

111 72152
112 75549
113 78976
114 82574
115 86199
116 90052
117 94053
118 98089
119 102371
120 106711

n tn

121 111246
122 116006
123 120768
124 125837
125 130985
126 136402
127 141853
128 147575
129 153500
130 159470

131 165757
132 172253
133 178772
134 185682
135 192674
136 200070
137 207440
138 215111
139 223151
140 231179

141 239687
142 248292
143 257130
144 266522
145 275691
146 285536
147 295385
148 305605
149 316146
150 326952

151 337891
152 349316
153 361051
154 372976
155 385325
156 398032
157 410750
158 424249
159 437744
160 451759

n tn

161 466128
162 480898
163 495924
164 511275
165 527179
166 543486
167 559950
168 576987
169 594453
170 612306

171 630619
172 649344
173 668273
174 688082
175 708017
176 728557
177 749759
178 770893
179 792983
180 815666

181 838151
182 862084
183 885874
184 910270
185 935691
186 960959
187 987344
188 1014149
189 1041441
190 1069393

191 1097727
192 1127002
193 1156747
194 1186965
195 1217963
196 1249657
197 1281804
198 1314840
199 1348514
200 1382630

which can be seen in Fig. 8, suggests there is no simple formula. However, the sequence does appear to become smoother 
at a larger scale, as can be seen in Fig. 9. This is (apparently) confirmed further in Fig. 10, which gives a log-log plot, and 
suggests a possible power law.

By analogy with the case of triangles, where the answer is asymptotic to n2

48 (cf. Honsberger’s Theorem), we might 
wonder if tn ∼ nk

C for some integers k and C . If this were so, then

tn+1

tn
∼ (n + 1)k

nk
= nk + knk−1 + · · ·

nk
∼ 1 + k

n
.

Computed values of 
(

tn+1
tn

− 1
)

× n strongly suggest a likely value of k = 5. Computed values of Cn = n5

tn
suggest a possible 

value in the order of C ≈ 229000. Table 6 gives calculated values of Cn for n up to 10000 (by hundreds); Table 7 goes up to 
n = 20000 (by thousands). The third column of Table 6 gives the difference dn = Cn −Cn−100, which shows that the fall of Cn

becomes slower as n increases. The values dn are themselves decreasing, as governed by the ratio rn = dn/dn−100. This ratio 
seems to be tending towards 0.98 or 0.99, or thereabouts. If so, then continuing the trend, Cn seems to approach 229028 or 
229024, respectively. So we have the following tentative conjecture; we have made an explicit choice for the denominator 
so as to have a concrete statement, but there is some level of uncertainty, as just discussed.
10
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Table
2

Calculated  values of tn .

87631384
88181501
30438429
47743940
04819100
00750626
75513454
15036529
56161851
91579018

76600831
31957643
52207309
07240927
350139966
321888040
657158659
687371188
147515787
182224551

n tn

8100 152234350689174
8200 161866628410449
8300 171980417994570
8400 182593551239230
8500 193724293506541
8600 205391352861569
8700 217613878464370
8800 230411473926234
8900 243804197732022
9000 257812568218126

9100 272457573348976
9200 287760666512263
9300 303743784383639
9400 320429342544289
9500 337840242823660
9600 355999882739690
9700 374932153990010
9800 394661455344190
9900 415212690326932
10000 436611276762080

ConT

hop

11
n tn

100 42817
200 1382630
300 10542791
400 44512930
500 135995968
600 338647149
700 732301457
800 1428244253
900 2574424362
1000 4360687860

1100 7024066455
1200 10853927088
1300 16197354205
1400 23464200340
1500 33132516713
1600 45753651322
1700 61957547844
1800 82458026396
1900 108057877719
2000 139654346301

n tn

2100 178244109766
2200 224928623704
2300 280919515766
2400 347543441363
2500 426247856357
2600 518605683615
2700 626321040933
2800 751234199645
2900 895326815879
3000 1060727392377

3100 1249716260424
3200 1464730980692
3300 1708371608956
3400 1983405792552
3500 2292773954230
3600 2639594896693
3700 3027170849616
3800 3458992238494
3900 3938743901688
4000 4470309160343

n tn

4100 5057776483155
4200 5705443122022
4300 6417821623924
4400 7199644279518
4500 8055868989730
4600 8991684402358
4700 10012513881131
4800 11124023171269
4900 12332123259033
5000 13642977397892

5100 15063004902111
5200 16598887173873
5300 18257573582602
5400 20046284952842
5500 21972520100932
5600 24044061595649
5700 26268978527115
5800 28655635295636
5900 31212693377826
6000 33949118928429

n tn

6100 368741
6200 399974
6300 433289
6400 468787
6500 506575
6600 546761
6700 589457
6800 634781
6900 682850
7000 733788

7100 787722
7200 844782
7300 905101
7400 968818
7500 103607
7600 110701
7700 118178
7800 126054
7900 134345
8000 143066

jectu
re 4.1. The num

ber tn
of integer tetrahedra of perim

eter n
, up to congruence, satisfies

tn ∼
n

5

229024
as

n →
∞

.

aking Conjecture
4.1

as given, one could then aim
 to analyse the sequence sn =

tn −
n

5

229024 . For exam
ple, one m

ight 
e that this is a quartic polynom

ial. A
s above, evidence for this could be gathered by calculating values of (

sn+
1

sn
−

1 )×
n. 



Table 3
Calculated values of dtn .

n/d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6 1 . . . . . . . . . . . . . .

7 . . . . . . . . . . . . . . .

8 . . . . . . . . . . . . . . .

9 . 1 . . . . . . . . . . . . .

10 . 1 . . . . . . . . . . . . .

11 . 1 . . . . . . . . . . . . .

12 . 1 2 . . . . . . . . . . . .

13 . . 2 . . . . . . . . . . . .

14 . . 3 . . . . . . . . . . . .

15 . . 4 2 . . . . . . . . . . .

16 . . 3 3 . . . . . . . . . . .

17 . . 1 6 . . . . . . . . . . .

18 . . 1 8 3 . . . . . . . . . .

19 . . . 7 4 . . . . . . . . . .

20 . . . 8 10 . . . . . . . . . .

21 . . . 6 12 3 . . . . . . . . .

22 . . . 3 17 5 . . . . . . . . .

23 . . . 1 17 13 . . . . . . . . .

24 . . . 1 16 17 4 . . . . . . . .

25 . . . . 15 25 6 . . . . . . . .

26 . . . . 11 29 16 . . . . . . . .

27 . . . . 6 34 22 4 . . . . . . .

28 . . . . 3 32 34 7 . . . . . . .

29 . . . . 1 29 41 19 . . . . . . .

30 . . . . 1 27 55 29 5 . . . . . .

31 . . . . . 18 55 42 8 . . . . . .

32 . . . . . 11 61 57 22 . . . . . .

33 . . . . . 6 57 72 35 5 . . . . .

34 . . . . . 3 51 81 52 9 . . . . .

35 . . . . . 1 43 94 71 25 . . . . .

36 . . . . . 1 31 95 91 40 6 . . . .

37 . . . . . . 18 100 109 60 10 . . . .

38 . . . . . . 11 90 130 87 28 . . . .

39 . . . . . . 6 81 140 111 47 6 . . .

40 . . . . . . 3 67 155 141 71 11 . . .

41 . . . . . . 1 47 149 163 101 31 . . .

42 . . . . . . 1 31 153 192 132 52 7 . .

43 . . . . . . . 18 138 209 172 81 12 . .

44 . . . . . . . 11 121 221 200 115 34 . .

45 . . . . . . . 6 100 231 239 158 56 7 .

46 . . . . . . . 3 72 229 271 202 94 13 .

47 . . . . . . . 1 47 224 296 242 130 37 .

48 . . . . . . . 1 31 200 320 289 180 60 8
49 . . . . . . . . 18 175 331 342 233 104 14
50 . . . . . . . . 11 143 337 374 288 145 40

However, these values appear to be quite chaotic, even when we look at different values of C around the conjectured value 
of 229024. However, we have more success by splitting up the sn sequence, and looking at subsequences si , si+k, si+2k, . . . , 
for various integers k ≥ 2 and for each 0 ≤ i ≤ k − 1, especially when k is a multiple of 12. Here the relevant value to 
calculate is 

(
sn+k

sn
− 1

)
× n

k , and this does seem to approach 4 as n → ∞ (for k ≡ 0 (mod 12)), for various C . Might there 
be a multi-case formula for tn? Attempts to fit polynomials to subsequences (of the kind described above), using various 
statistical packages, have not led to any success. In any case, the uncertainty as to the value of C ≈ 229024 leads to even 
greater uncertainty here. Some preliminary attempts at curve fitting have been made, but a proper analysis thereof would 
seem to be a worthwhile direction for future research.

Here is an additional note about Conjecture 4.1 (we will return to it again in Section 4.5). Recall that tn =
1

24

∑
σ∈S4

fix(σ ); cf. (2.2). For σ ∈ S4 \ {id4}, it is easy to see that fix(σ ) is bounded above by n4; this can be seen by 
examining the constraints on the labels of a graph G fixed by σ in cases (ii)–(v), as listed in Section 2. Thus, if tn is indeed 
(asymptotically) a quintic, then so too is fix(id4) = |Tn|, and so

tn ∼ |Tn| as n → ∞.
J. East, M. Hendriksen and L. Park Computational Geometry: Theory and Applications 108 (2023) 101915
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Table 4
Calculated values of dtn . The pdf can be zoomed for greater detail.
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Table 5
Calculated values of fix(σ ), for σ of types (i)–(v), as well as tn and t′

n .

n (i) (ii) (iii) (iv) (v) tn t′
n

1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 1 1 1 1 1 1 1
7 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
9 4 1 0 2 0 1 1
10 3 0 3 1 1 1 1

11 6 0 2 2 0 1 1
12 11 2 3 5 1 3 3
13 18 0 2 4 0 2 2
14 27 0 3 5 1 3 3
15 42 3 6 10 0 6 7
16 57 0 9 9 1 6 7
17 84 0 8 10 0 7 9
18 120 3 8 18 2 12 14
19 138 0 6 18 0 11 13
20 234 0 18 22 2 18 24

21 268 4 12 28 0 21 28
22 354 0 18 30 2 25 34
23 480 0 16 36 0 31 44
24 560 5 16 42 2 38 54
25 750 0 26 46 0 46 69
26 897 0 33 55 3 56 83
27 1082 5 30 62 0 66 101
28 1326 0 30 66 2 76 118
29 1584 0 36 78 0 90 141
30 2013 6 57 93 3 117 186

31 2256 0 48 92 0 123 200
32 2811 0 51 107 3 151 247
33 3258 6 50 124 0 175 288
34 3738 0 66 124 4 196 328
35 4554 0 70 142 0 234 397
36 5047 7 83 161 3 264 446
37 5886 0 78 168 0 297 510
38 6942 0 78 184 4 346 598
39 7778 8 98 208 0 391 678
40 9048 0 120 220 4 448 784

41 10104 0 108 230 0 492 869
42 11648 8 112 260 4 568 1004
43 13086 0 122 278 0 630 1121
44 14652 0 144 290 4 702 1257
45 16698 9 146 320 0 797 1434
46 18609 0 165 347 5 884 1592
47 20778 0 162 364 0 977 1772
48 23170 10 174 390 4 1089 1981
49 26118 0 190 420 0 1217 2224
50 28755 0 219 445 5 1338 2451

n (i) (ii) (iii) (iv) (v) tn t′
n

51 31696 10 216 472 0 1469 2702
52 35265 0 225 501 5 1624 2995
53 38616 0 232 532 0 1771 3276
54 42950 11 266 568 6 1970 3653
55 47136 0 272 592 0 2146 3996
56 51519 0 291 635 5 2343 4366
57 56838 12 302 676 0 2579 4820
58 61590 0 330 692 6 2782 5215
59 67524 0 340 744 0 3042 5712
60 73716 12 364 798 6 3322 6242

61 80058 0 366 818 0 3586 6763
62 87486 0 390 866 6 3912 7388
63 94438 13 406 924 0 4221 7980
64 102546 0 438 956 6 4568 8655
65 111510 0 454 1000 0 4953 9406
66 120217 13 465 1063 7 5339 10143
67 129474 0 478 1106 0 5731 10909
68 140337 0 537 1151 7 6204 11829
69 150746 14 542 1214 0 6657 12707
70 162687 0 579 1265 7 7169 13702

71 174732 0 580 1320 0 7683 14706
72 187293 15 593 1381 7 8230 15766
73 201954 0 646 1446 0 8857 16991
74 215556 0 696 1502 8 9446 18137
75 230754 15 690 1556 0 10095 19412
76 248271 0 723 1637 7 10846 20870
77 263898 0 734 1702 0 11513 22175
78 283060 16 808 1770 8 12345 23801
79 301542 0 806 1840 0 13125 25330
80 321228 0 840 1910 8 13969 26979

81 342986 17 870 1990 0 14903 28811
82 363870 0 906 2054 8 15790 30549
83 387786 0 946 2140 0 16811 32552
84 411902 17 990 2240 8 17854 34584
85 437766 0 1010 2294 0 18940 36733
86 465111 0 1035 2383 9 20107 39018
87 491910 18 1086 2492 0 21261 41276
88 521439 0 1143 2557 9 22511 43739
89 552630 0 1146 2646 0 23831 46339
90 585595 19 1211 2765 9 25251 49115

91 618420 0 1232 2838 0 26631 51843
92 654549 0 1317 2933 9 28173 54875
93 691444 19 1328 3046 0 29744 57965
94 729144 0 1380 3140 10 31341 61107
95 771042 0 1422 3246 0 33116 64609
96 811697 20 1453 3351 9 34849 68018
97 855402 0 1522 3456 0 36696 71664
98 902544 0 1560 3566 10 38695 75602
99 947912 20 1592 3668 0 40619 79404
100 999738 0 1674 3798 10 42817 83730

This can be interpreted as saying that virtually all tetrahedra have no symmetry at all. It also leads to an equivalent formu-
lation of Conjecture 4.1, again subject to some uncertainty in the value of the stated numerical coefficient:

Conjecture 4.2. The set Tn of graphs corresponding to integer tetrahedra of perimeter n satisfies

|Tn| ∼ 3n5

28628
as n → ∞.

Remark 4.3. Asymptotics of the numbers dt were not discussed explicitly by Kurz [12]. However, it was observed on [12, 
p. 7] that dt seems to be approximately 0.103 times the number of graphs from G satisfying (T1)′ and (T2)–(T5); see 
Proposition 2.5 and Remark 2.13. The language used in [12] was different, and instead spoke of symmetric matrices, but it 
14
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Fig. 8. Calculated values of tn , 1 ≤ n ≤ 30.

Fig. 9. Calculated values of tn , 1 ≤ n ≤ 200.

follows from [12, Lemma 4] that the number of such graphs/matrices is asymptotic to d5

4 . Thus, a tentative conjecture for 
an asymptotic expression for dt is

dt ∼ 0.103 × d5

4
≈ d5

38.835
as d → ∞. (4.4)

This fares quite well with computed values; see Table 8. The non-integrality of the denominator 38.835 in (4.4) suggests 
that the denominator in Conjecture 4.1 for the tn sequence might not be an integer either. Again, we will say more about 
this in Section 4.5.

4.2. Distributions

Looking at Figs. 13 and 14, which graph the numbers dt100, dt200 and dt10000 (for all allowable values of d), one sees a 
general shape emerging. In fact, by plotting scaled graphs of dtn , one sees that the shapes are essentially identical, up to 
scale; several such graphs can be seen at [3], including some animations. This means that in principle one might be able 
to estimate the value of (say) t30000 by interpolating the shape of the dt30000 curve from the dt10000 or dt20000 curve (for 
which we have full data), and calculating a few of the maximum values of dt30000 to obtain the scaling factor. Table 7 gives 
the maximum values of dt30000 and dt40000, which occur at d = 7140 and d = 9520, respectively. The maximum value of dtn
15
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Fig. 10. Log-log plot of calculated values of tn , 1 ≤ n ≤ 200.

Fig. 11. Calculated values of tn , 1 ≤ n ≤ 10000 (by hundreds).

seems to regularly occur when d ≈ 0.238n ≈ n
4.2 . We do not currently know the significance of this number. We will come 

back to this point in Section 4.5.
Since there are so many points, Fig. 14 appears to show a number of continuous curves. The dark blue “curve” plots the 

sequence dt10000 (1667 ≤ d ≤ 3332), while the orange “curve” is the discrete derivative of this sequence: i.e., the values of 
dt10000 − d−1t10000. (The meaning of the light blue curve will be explained in Section 4.4.) Thus, the orange curve is (an 
approximation to) the derivative of the blue curve. One may see that although the orange curve appears to be continuous, 
there is a sharp corner just after the maximum slope (which occurs at around d = 2073).

Similarly, Figs. 15 and 16 graph the numbers 50tn , 100tn and 1000tn (for all allowable values of n), and again one sees a 
general shape emerging. Again Fig. 16 shows the discrete derivative of the 1000tn sequence (in orange); although it is not 
as easy to see, the orange curve also has a sharp corner, this time just before the minimum slope (which occurs at around 
n ≈ 4830).

The data used to create Fig. 16 also allows one to calculate

1000t =
6000∑

n=3003

1000tn = 25728695195597,

which agrees with the largest computed value given by Kurz in [12, Table 2]. Some further values of dt (up to d = 2000) are 
given in Table 8.
16
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Fig. 12. Heat map of the numbers log10(dtn), with 1 ≤ n ≤ 2000 and 1 ≤ d ≤ 666 on the horizontal and vertical axes, respectively. (For interpretation of the 
colours in the figures, the reader is referred to the web version of this article.)

Fig. 13. Calculated values of dt100 (left) and dt200 (right).

4.3. Scratching the surface: maximal diameter

Tables 3 and 4 give values of dtn , and a couple of simple patterns seem to emerge when looking at the right-most entry 
of each row, corresponding to the maximum d for a fixed n. Specifically, we see the three sequences

1,1,2,2,3,3, . . . , 0,1,2,3,4,5, . . . , 0,1,3,6,10,13,16,19,22,25,28,31,34, . . . , (4.5)

corresponding to n ≡ 0, n ≡ 1 and n ≡ 2 (mod 3), respectively. These are the numbers

dt3d+3 (d = 1,2,3, . . .), dt3d+4 (d = 1,2,3, . . .), dt3d+5 (d = 1,2,3, . . .),

respectively. The apparent patterns in the first two sequences are obvious; it appears that

dt3d+3 = � d
2 � and dt3d+4 = d − 1 for d ≥ 1.

There are simple explanations for these. We give the details for the first, and sketch them for the second. (We will consider 
the third sequence later.) We begin with a simple observation:
17
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Fig. 14. Calculated values of dt10000 (dark blue) and the discrete derivative (orange). The light blue curve is explained in Section 4.4.

Fig. 15. Calculated values of 50tn (left) and 100tn (right).

Fig. 16. Calculated values of 1000tn (dark blue) and the discrete derivative (orange). The light blue curve is explained in Section 4.4.

Lemma 4.6. Any altitude of an integer triangle is greater than 1/
√

2.

Proof. Let the side-lengths of the triangle be a ≤ b ≤ d, and let x be any of a, b, d. Let h be the altitude measured from a side 
of length x, and denote the area of the triangle by A = xh/2. By Heron’s formula, and keeping a ≤ b ≤ d and a + b ≥ d + 1
18
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Fig. 17. Calculated values of fix(σ ), for σ of type (i), 1 ≤ n ≤ 100.

Fig. 18. Left and right: calculated values of fix(σ ), for σ of type (ii) and (v), 1 ≤ n ≤ 100; cf. Lemmas 2.7 and 2.10.

Fig. 19. Left and right: calculated values of fix(σ ), for σ of type (iii) and (iv), 1 ≤ n ≤ 100.

in mind, we have

h2 = 4A2

x2
≥ 4A2

d2
= 4

d2
· 1

16
· (a + b + d) · (a + b − d) · (a − b + d) · (−a + b + d)

≥ 1

4d2
· (2d + 1) · 1 · a · d >

2ad2

4d2
= a

2
≥ 1

2
.

The result follows. �
Remark 4.7. If the shortest side of an integer triangle is at least 2, then it follows from the above proof that any altitude 
is greater than 1. Of course this is not true if the shortest side has length 1, and if the altitude is measured from one of 
the two sides of length d; in fact it is easy to show that h2 = 1 − 1/4d2 in this case. Since the latter is decreasing in d, and 
equal to 3/4 when d = 1, the lower bound of 1/

√
2 ≈ 0.707 in Lemma 4.6 could be replaced by 

√
3/2 ≈ 0.866, though the 

latter is not a strict lower bound.
19
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Table 6
Calculated values of Cn = n5/tn , and associated differences dn = Cn − Cn−100 and ratios rn = dn/dn−100; see Sec-
tion 4.1 for more details.

n Cn dn rn

100 233552.094
200 231442.975 −2109.119
300 230489.251 −953.724 0.452
400 230045.517 −443.734 0.465
500 229786.224 −259.293 0.584
600 229619.532 −166.692 0.643
700 229509.307 −110.225 0.661
800 229428.544 −80.763 0.733
900 229367.780 −60.765 0.752
1000 229321.619 −46.161 0.760

1100 229284.562 −37.057 0.803
1200 229255.271 −29.291 0.790
1300 229230.648 −24.623 0.841
1400 229210.453 −20.195 0.820
1500 229193.275 −17.179 0.851
1600 229178.649 −14.625 0.851
1700 229166.106 −12.543 0.858
1800 229155.133 −10.973 0.875
1900 229145.626 −9.507 0.866
2000 229137.158 −8.468 0.891

2100 229129.647 −7.511 0.887
2200 229122.995 −6.652 0.886
2300 229116.976 −6.019 0.905
2400 229111.617 −5.359 0.890
2500 229106.724 −4.893 0.913
2600 229102.310 −4.414 0.902
2700 229098.275 −4.035 0.914
2800 229094.575 −3.699 0.917
2900 229091.195 −3.381 0.914
3000 229088.078 −3.116 0.922

3100 229085.208 −2.870 0.921
3200 229082.558 −2.650 0.923
3300 229080.095 −2.463 0.929
3400 229077.802 −2.292 0.931
3500 229075.679 −2.123 0.926
3600 229073.696 −1.982 0.934
3700 229071.831 −1.865 0.941
3800 229070.095 −1.736 0.931
3900 229068.457 −1.637 0.943
4000 229066.931 −1.526 0.932

4100 229065.482 −1.449 0.949
4200 229064.122 −1.360 0.939
4300 229062.837 −1.285 0.945
4400 229061.628 −1.209 0.941
4500 229060.484 −1.144 0.946
4600 229059.392 −1.092 0.955
4700 229058.366 −1.026 0.939
4800 229057.387 −0.979 0.955
4900 229056.459 −0.928 0.947
5000 229055.573 −0.887 0.956

n Cn dn rn

5100 229054.729 −0.843 0.951
5200 229053.929 −0.801 0.949
5300 229053.160 −0.768 0.960
5400 229052.428 −0.732 0.953
5500 229051.730 −0.698 0.952
5600 229051.059 −0.672 0.963
5700 229050.420 −0.638 0.950
5800 229049.805 −0.615 0.964
5900 229049.217 −0.588 0.956
6000 229048.654 −0.563 0.958

6100 229048.111 −0.543 0.965
6200 229047.591 −0.520 0.956
6300 229047.090 −0.501 0.965
6400 229046.610 −0.480 0.958
6500 229046.146 −0.464 0.965
6600 229045.700 −0.446 0.963
6700 229045.270 −0.430 0.963
6800 229044.855 −0.415 0.965
6900 229044.455 −0.400 0.965
7000 229044.070 −0.385 0.962

7100 229043.698 −0.373 0.968
7200 229043.339 −0.359 0.963
7300 229042.990 −0.349 0.972
7400 229042.654 −0.337 0.966
7500 229042.329 −0.325 0.966
7600 229042.014 −0.314 0.967
7700 229041.709 −0.306 0.972
7800 229041.413 −0.296 0.968
7900 229041.127 −0.286 0.966
8000 229040.850 −0.277 0.969

8100 229040.580 −0.270 0.975
8200 229040.320 −0.261 0.965
8300 229040.067 −0.253 0.971
8400 229039.821 −0.246 0.973
8500 229039.582 −0.239 0.969
8600 229039.349 −0.233 0.978
8700 229039.124 −0.225 0.966
8800 229038.905 −0.219 0.972
8900 229038.692 −0.213 0.974
9000 229038.485 −0.207 0.970

9100 229038.282 −0.203 0.981
9200 229038.086 −0.196 0.965
9300 229037.895 −0.191 0.977
9400 229037.708 −0.187 0.975
9500 229037.527 −0.181 0.970
9600 229037.350 −0.177 0.977
9700 229037.178 −0.172 0.971
9800 229037.010 −0.168 0.979
9900 229036.846 −0.164 0.975
10000 229036.686 −0.160 0.974

Lemma 4.8. For any d ≥ 1 we have dt3d+3 = � d
2 �.

Proof. First consider an integer triangle with side-lengths B ≤ C ≤ d satisfying B + C = d + 1, and join two copies of this 
triangle together in the way shown in Fig. 20. By Lemma 4.6, we can fold these towards each other (as in Fig. 6) until the 
tips are 1 unit apart, thus obtaining an integer tetrahedron of diameter d and perimeter 3d +3. There are � d

2 � such triangles, 
and they give rise to pairwise-noncongruent tetrahedra.

Conversely, let T be an arbitrary tetrahedron with diameter d and perimeter n = 3d + 3. We can construct T by folding, 
as in Fig. 6, assuming that A = d and B ≤ C . To ensure that n = 3d + 3 we must of course have B + C = b + c = d + 1 and 
a = 1. To complete the proof, we must show that B = c, as then also C = b. Aiming for a contradiction, suppose instead 
that B �= c, and consider the points P and Q as shown in Fig. 6. These are on the circles x2 + y2 = B2 and x2 + y2 = c2, 
20
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Fig. 20. Creating an integer tetrahedron of diameter d and perimeter n = 3d + 3 by folding congruent triangles (with B + C = d + 1); see the proof of 
Lemma 4.8 for more details, and cf. Fig. 6.

respectively. Since B and c differ by at least 1 (as they are distinct positive integers), it follows that |P Q | ≥ 1 = a. But this 
contradicts |P Q | < a < |P R| from the proof of Proposition 2.5. �
Lemma 4.9. For any d ≥ 1 we have dt3d+4 = d − 1.

Sketch of proof. Again we must analyse the pairs of triangles (B, C, d) and (b, c, d) that can be folded to create appropriate 
tetrahedra, as in Fig. 6 (with A = d). Up to symmetry, this time we have either

(a) B + C = b + c = d + 1 and a = 2, or else
(b) B + C = d + 1, b + c = d + 2 and a = 1.

We first note that case (b) never actually occurs. Indeed, here, since B + C �= b + c, we must either have B �= c or C �= b
(or both). Considering circles, as in the proof of Lemma 4.8, we see that |P Q | ≥ 1 = a, so the folding procedure cannot be 
carried out.

This leaves us to consider case (a), and we assume without loss of generality that B ≤ c. Again considering circles, B and 
c cannot differ by more than 1, so we must have either

(a1) c = B (and b = C ), or else
(a2) c = B + 1 (and b = C − 1).

We consider these in turn, and show that there are � d
2 � − 1 and � d

2 	 tetrahedra in each case. Since these sum to d − 1, this 
will complete the proof.

(a1). By symmetry, we may also assume that B ≤ C(= d + 1 − B). So 1 ≤ B ≤ � d
2 �. Using Remark 4.7, we see that the folding 

procedure can be carried out in every case except for B = 1.

(a2). We again have 1 ≤ B ≤ � d
2 �, and this time the folding procedure can be carried out in each case. However, when d

is odd, the B = � d
2 � − 1 and B = � d

2 � cases produce congruent tetrahedra. So we obtain d
2 tetrahedra when d is even, and 

� d
2 � − 1 when d is odd. In both cases, this is equal to � d

2 	. �
The behaviour of the third sequence in (4.5) appears to be rather more complex. For convenience in the following 

discussion, we will write ud = dt3d+5 for d ≥ 1. While these numbers seem to quickly stabilise into an arithmetic progression, 
ud = 3d − 5 (d ≥ 5), this only persists until d = 41, where we see an interesting change in the sequence:

. . . ,100,103,106,109,112,115,118,115,115,116,117,118,119,121,122,124,126,127,129, . . .

The colours in the above lists are reflected in Tables 3 and 4, and we note that u41 = 118 and u42 = 115. The sequence of 
differences ud+1 − ud (d ≥ 42) begins

0,1,1,1,1,2,1,2,2,1,2,2,1,2,2,2,1,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,1, . . . .

Although this appears somewhat chaotic, further calculations show that the last difference of 1 seems to occur at d = 1110, 
with all subsequent differences being 2. See Fig. 21, which plots the differences ud+1 − ud (right), and also the ratios ud/d
(left). The above discussion suggests the possible formula

ud = dt3d+5 = 2d + 15 for d ≥ 1111. (4.10)

We have verified this computationally up to d = 50, 000, 000. Interestingly, we obtained much better performance using the 
“naïve” algorithm described in Section 3.1 (see steps (I)–(IV)), as compared to our modification of Kurz’s algorithm from 
[12]. (For example, the latter calculated u3000 = 6015 in around 2 hours, while the former took a fraction of a second; it 
calculated the 50, 000, 000th term in around 80 minutes.) The reason for this appears to be that our original algorithm 
21
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Fig. 21. Left and right: calculated values of ud/d and ud+1 − ud , 1 ≤ d ≤ 2000, where ud = dt3d+5.

Fig. 22. The number of “sporadic” tetrahedra with diameter d and perimeter 3d + 5, 1 ≤ d ≤ 2000; see Section 4.3 for more details.

directly creates and stores all tetrahedra with given dimensions, and then counts them; this led to serious memory issues 
in general, but for parameters n, d for which dtn is relatively small (such as n = 3d + 5) this is actually an advantage. As 
discussed in Section 3.1, the Kurz-based algorithm moves through tuple space, counting or rejecting tuples as appropriate; 
it seems that when n is small relative to d, many more tuples are rejected than counted, leading to longer running times.

We have not attempted to prove (4.10), but we expect this could be done (if it is true) in a similar way to Lemmas 4.8
and 4.9 above. Computations suggest that for d ≥ 1111, there are:

• � d
2 	 − 1 tetrahedra with a = 1,

• � 3d
2 � − 3 tetrahedra with a = 3, and

• 19 “sporadic” tetrahedra with a = 2,

and these sum to 2d + 15. For smaller d the number of sporadic tetrahedra is different; for example, it is 20 for 205 ≤ d ≤
1110. Fig. 22 plots the number of such sporadic tetrahedra for 1 ≤ d ≤ 2000.

We have not attempted to systematically study the numbers dt3d+k for (fixed) k ≥ 6, but Fig. 23 gives some graphs of 
computed values for k = 3, 4, . . . , 10. It appears that for fixed k, the sequence dt3d+k (d = 1, 2, 3, . . .) is eventually linear in 
d, but the “pre-linear” behaviour becomes more complex, and lasts longer as k increases. Taking k = 10, for example, and 
writing vd = dt3d+10, Fig. 24 shows the ratios vd/d and differences vd+1 − vd (cf. Fig. 21, which does the same for k = 5). 
Both appear to approach a limit of 10, strongly suggesting that eventually vd = 10d + l for some l. Calculations suggest that 
l = 2470; this value of l holds for 2, 000, 000 ≤ d ≤ 20, 000, 000. But we note that l = 2471 for d = 1, 000, 000, so that the 
“pre-linear” behaviour persists beyond the 1, 000, 000th term.

4.4. Initial segments: a glimpse of order and hope?

In the previous section we looked at the very top parts of the columns in the dtn data, as shown in Tables 3 and 4. One 
of the most interesting/promising observations arises when one looks at the bottom parts of these columns.

Examining consecutive columns, one sees that the first few values at the bottom of one column are present in the next. 
These are the red entries in the lower parts of Tables 3 and 4, specifically the values dtn with n approximately ranging 
22
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Fig. 23. Calculated values of dt3d+k , 1 ≤ d ≤ 1000, for k = 3,4, . . . ,10 (bottom to top).

Fig. 24. Left and right: calculated values of vd/d and vd+1 − vd , 1 ≤ d ≤ 20000, where vd = dt3d+10.

from 5d to 6d. (For interpretation of the references to colour please refer to the web version of this article.) Note that each 
column seems to add an extra number to the “Stable Column Sequence” (as we will call it), but that no extra number is 
added from column d = 28 to d = 29; this is indicated by green in Table 4. Although we do not have a complete explanation 
for why this happens, it appears that for fixed d, the last value of n for which dtn is not this “stable” value is �5.035d�; note 
that

�5.035 · 28� = �140.98� = 141 and �5.035 · 29� = �146.015� = 147,

so that column d = 29 adds an additional 6 “unstable” dtn values from column d = 28.
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Fig. 25. Calculated values of ak (left) and bk (right), 1 ≤ k ≤ 200, as defined in (4.12).

In any case, the resulting Stable Column Sequence begins:

1,1,3,6,11,18,31,47,72,105,149,206,281,372,487,627,796,997,1237,1516,1843,2220,2653,3147, . . .

(4.11)

This sequence does not appear on the OEIS. The first few values are easy to understand:

• for d ≥ 1, dt6d = 1 counts only 
[
(d, d), (d, d), (d, d)

]
, the equilateral tetrahedron,

• for d ≥ 2, dt6d−1 = 1 counts only 
[
(d, d), (d, d), (d, d − 1)

]
,

• for d ≥ 3, dt6d−2 = 3 counts only 
[
(d, d), (d, d), (d, d − 2)

]
, 
[
(d, d), (d, d), (d − 1, d − 1)

]
and 

[
(d, d), (d, d − 1), (d, d − 1)

]
.

One could similarly explain other values, with ad hoc arguments: e.g., dt6d−3 = 6 for d ≥ 4.

If we denote the sequence (4.11) by ak (k = 0, 1, 2, . . .), then calculating 
(

ak+1
ak

− 1
)

× k suggests that ak is quartic in k. 

Further experimentation quickly suggests the leading coefficient is 1
96 . Additional analysis suggests that ak − k2

96 is quadratic 
with leading coefficient 7

16 = 42
96 . After examining ak − k4

96 − 7k2

16 , it eventually appears that we have the exact formula

ak = k4 + 42k2 + bk

96
where b0 = 96, and for k ≥ 1: bk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

192 if k ≡ 0 (mod 12)

53 if k ≡ 1,5,7,11 (mod 12)

104 if k ≡ 2,10 (mod 12)

117 if k ≡ 3,9 (mod 12)

128 if k ≡ 4,8 (mod 12)

168 if k ≡ 6 (mod 12).

(4.12)

Equivalently, for k ≥ 1, ak is the nearest integer to

k4 + 42k2 + 148

96
or

k4 + 42k2 + 85

96
,

for even and odd k, respectively. (The values of 148 and 85 are simply the average of the maximum and minimum values of 
bk for even and odd k, respectively. A single “nearest integer formula” cannot be given, unfortunately, because the distance 
between the maximum and minimum values of bk for arbitrary k (i.e., 192 −53 = 139) is greater than the denominator, 96.) 
We do not currently know if there is any significance in the exact values of the numbers bk ∈ {53, 104, 117, 128, 168, 192}.

Conjecture 4.13. For suitably small k (approximately 0 ≤ k < d), we have dt6d−k = ak, where ak is defined in (4.12). (Note then that 
for such k, dt6d−k would depend only on k, and not on d.)

The formula (4.12) can be used to calculate many more values of ak . Fig. 25 plots these, together with the associated 
values of bk; the periodic nature of the latter can be readily seen in the graph.

The existence of the Stable Column Sequence implies that there are six “Stable Row Sequences”, one for each residue of 
n, modulo 6. So the nth row of the dtn table, for suitably large n, begins:

• 18, 206, 997, 3147, 7736, 16168, 30171, 51797, 83422, . . . when n ≡ 0 (mod 6),
• 11, 149, 796, 2653, 6747, 14427, 27368, 47567, 77347, . . . when n ≡ 1 (mod 6),
• 6, 105, 627, 2220, 5856, 12831, 24765, 43602, 71610, . . . when n ≡ 2 (mod 6),
• 3, 72, 487, 1843, 5057, 11372, 22353, 39891, 66199, . . . when n ≡ 3 (mod 6),
• 1, 47, 372, 1516, 4343, 10041, 20122, 36422, 61101, . . . when n ≡ 4 (mod 6),
• 1, 31, 281, 1237, 3710, 8833, 18065, 33187, 56306, . . . when n ≡ 5 (mod 6).
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Fig. 26. Calculated values of ρn (left), 1 ≤ n ≤ 2000, and dρ (right), 1 ≤ d ≤ 300; see Section 4.5 for more details.

These can all be seen in Table 4, and they are all of course subsequences of the Stable Column Sequence. None of these six 
(sub)sequences appear on the OEIS. Note that the (initial segments of the) Stable Row Sequences account for the left-most 
part of the graphs in Figs. 13 and 14; see especially Fig. 14, which shows values of ak in light blue. Similarly, the Stable 
Column Sequence accounts for the right-most part of the graphs in Figs. 15 and 16; see especially Fig. 16, which shows 
values of ak in light blue.

So we have seen that the first portion of a row, and the last portion of a column, in the dtn table appears to be governed 
by a certain quartic (indeed, biquadratic) polynomial. Unfortunately, similar experimentation shows that the remainder of 
these rows/columns do not look at all like any polynomial. Indeed, even considering small portions at the opposite end of 
each row/column does not seem to yield a polynomial pattern.

A possible approach to Conjecture 4.13 might be to show that any tuple 
[
(A, a), (B, b), (C, c)

]
with d = A =

max{A, B, C, a, b, c}, and with perimeter greater than (around) 5.035d, automatically satisfies conditions (T2)–(T6) from 
Proposition 2.5. The hope is that such a tuple is “close enough” to the equilateral 

[
(d, d), (d, d), (d, d)

]
that it corresponds to 

a tetrahedron by default. This would not immediately give the desired formula for ak , but it would at least show that some 
kind of Stable Column Sequence does exist.

4.5. Sums vs. maximums: more on asymptotics

We noted in Section 4.2 that one might hope to approximate values of tn (for large n) by interpolating the dtm curve (for 
smaller m), and using the value of maxd

dtn as the scaling factor. In this section we discuss a simpler attempt to estimate tn
(and dt) using single values of dtn .

To keep the following discussion manageable, it will be convenient to define a number of additional parameters:

• For fixed n we define μn = maxd
dtn , and the ratio ρn = tn/μn .

Further, let d∗(n) be the diameter corresponding to the maximum value of dtn: i.e., μn = d∗(n)tn .
• For fixed d we define dμ = maxn

dtn , and the ratio dρ = dt/dμ.
Further, let n∗(d) be the perimeter corresponding to the maximum value of dtn: i.e., dμ = dtn∗(d) .

Computationally, it seems that

d∗(n) ≈ 0.238n ≈ n

4.2
and n∗(d) ≈ 4.5d. (4.14)

We do not currently understand the significance of the number 0.238 ≈ 1
4.2 . However, 4.5d is of course almost exactly mid-

way between the extreme values of 3d + 3 ≤ n ≤ 6d; cf. Lemma 3.2. These values of d∗(n) and n∗(d) can be seen by locating 
the peaks in Figs. 13–16.

Fig. 26 shows graphs of calculated values of ρn (n ≤ 2000) and dρ (d ≤ 300). These graphs strongly suggest that (at least 
approximately) ρn is linear in n, and dρ is linear in d, so it seems worthwhile to look at the values of ρn/n and dρ/d. 
Accordingly,

• Table 7 shows calculated values of tn , μn , ρn and ρn/n (as well as d∗(n)), and
• Table 8 shows calculated values of dt , dμ, dρ and dρ/d (as well as n∗(d)).

Note that we have been able to calculate μn and dμ for higher values of n and d than for tn and dt . To obtain these we 
used the approximations for d∗(n) and n∗(d) from (4.14), and calculated enough values of dtn around the critical values, to 
ensure that we had found the peak of the curve. For the round values of n and d we used, the approximations in (4.14)
were in fact exact, with a single exception: n∗(1900) = 8551, whereas 4.5 · 1900 = 8550. But here we note that
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Table 7
Calculated values of tn and associated numbers defined in Section 4.5.

n d∗(n) tn μn ρn ρn/n Dn Cn

1000 238 4360687860 61261647 71.181368 0.071181368 16323.42663 229321.6190
2000 476 139654346301 980662960 142.408097 0.071204049 16315.49335 229137.1579
3000 714 1060727392377 4965253737 213.630048 0.071210016 16313.36570 229088.0784
4000 952 4470309160343 15693529026 284.850473 0.071212618 16312.45589 229066.9310
5000 1190 13642977397892 38315438250 356.069982 0.071213996 16311.96271 229055.5726
6000 1428 33949118928429 79452345303 427.289072 0.071214845 16311.66450 229048.6541
7000 1666 73378891579018 147197080983 498.507790 0.071215399 16311.46477 229044.0703
8000 1904 143066182224551 251113882084 569.726297 0.071215787 16311.32443 229040.8501
9000 2142 257812568218126 402238432945 640.944641 0.071216071 16311.22106 229038.4849
10000 2380 436611276762080 613077830990 712.162885 0.071216288 16311.14272 229036.6862

11000 2618 703171140799375 897610575535 783.381079 0.071216462 16311.08233 229035.2813
12000 2856 1086440561201385 1271286727639 854.599153 0.071216596 16311.03318 229034.1588
13000 3094 1621131464654093 1751027590016 925.817202 0.071216708 16310.99371 229033.2450
14000 3332 2348243259709892 2355226146934 997.035152 0.071216797 16310.96022 229032.4896
15000 3570 3315586803814407 3103746427345 1068.253120 0.071216875 16310.93299 229031.8562
16000 3808 4578308347767338 4017924323570 1139.471025 0.071216939 16310.90950 229031.3191
17000 4046 6199413506818430 5120566904917 1210.688899 0.071216994 16310.88931 229030.8589
18000 4284 8250291212969114 6435952631653 1281.906764 0.071217042 16310.87207 229030.4610
19000 4522 10811237680756863 7989831502801 1353.124616 0.071217085 16310.85711 229030.1141
20000 4760 13971980347794463 9809425098449 1424.342427 0.071217121 16310.84374 229029.8097

30000 7140 49660446083302 16310.76770

40000 9520 156951842767924 16310.78743

Table 8
Calculated values of dt and associated numbers defined in Section 4.5.

d n∗(d) dt dμ dρ dρ/d d D dC

100 450 256866619 2205518 116.465438 1.164654376 45.34082243 38.93071057
200 900 8227353208 35302466 233.053215 1.165266076 45.32261287 38.89464715
300 1350 62496428392 178753878 349.622784 1.165409278 45.31370223 38.88222195
400 1800 263399396125 564995595 466.197256 1.165493140 45.31008777 38.87632299
500 2250 803900006590 1379446698 582.769894 1.165539789 45.30802103 38.87299383
600 2700 2000468396580 2860504080 699.341214 1.165568690 45.30669993 38.87089650
700 3150 4323958989350 5299548768 815.910784 1.165586834 45.30574404 38.86947134
800 3600 8430487428682 9040920238 932.481120 1.165601400 45.30512262 38.86845248
900 4050 15192308794063 14481975268 1049.049492 1.165610546 45.30459332 38.86769338
1000 4500 25728695195597 22072986511 1165.619124 1.165619124 45.30424551 38.86710898

1100 4950 41436812404716 32317280628 1282.187474 1.165624976 45.30393559 38.86664795
1200 5400 64022597756042 45771110797 1398.755605 1.165629670 45.30368531 38.86627671
1300 5850 95531638650235 63043701776 1515.324068 1.165633899 45.30349455 38.86597207
1400 6300 138380047521949 84797295248 1631.892233 1.165637310 45.30333177 38.86571870
1500 6750 195385341804382 111747102464 1748.460027 1.165640018 45.30318808 38.86550511
1600 7200 269797320709960 144661271196 1865.027996 1.165642497 45.30307211 38.86532295
1700 7650 365328940733369 184360988174 1981.595696 1.165644527 45.30296828 38.86516620
1800 8100 486187194335920 231720360895 2098.163461 1.165646367 45.30288128 38.86503022
1900 8551 637103991780086 287666521356 2214.731102 1.165647948 45.30280388 38.86491110
2000 9000 823367026746276 353179561833 2331.298625 1.165649312 45.30273472 38.86480629

3000 13501 1787987440725 45.30233164

4000 18001 5650944679691 45.30215999

5000 22501 13796279726716 45.30206783

6000 27001 28608001167605 45.30201157

7000 31502 52999897734423 45.30197420

• 1900t8549 = 287666266084,
• 1900t8550 = 287666506644 = 1900t8549 + 240560,
• 1900t8551 = 287666521356 = 1900t8550 + 14712,
• 1900t8552 = 287666235410 = 1900t8551 + 271234,

meaning that 1900t8550 is comparatively very close to the maximum value of 1900μ = 1900t8551.
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The values displayed in Tables 7 and 8 strongly suggest that ρn/n and dρ/d tend to limits of around 0.07122 and 1.1657, 
respectively, leading to asymptotic expressions:

ρn ∼ 0.07122n as n → ∞ and dρ ∼ 1.1657d as d → ∞. (4.15)

(Interestingly, 0.07122 is quite close to 1
14 , although computational evidence suggests that the limit limn→∞ ρn

n is around 
1

14.041 , and this can make quite a big difference in the calculations that follow.)
By definition, we have tn = ρn × μn and dt = dρ × dμ. Thus, if we could also obtain asymptotic expressions for μn and 

dμ, then these could be combined with (4.15) to yield asymptotic expressions for tn and dt themselves (cf. Conjecture 4.1
and Remark 4.3).

Calculations show that the ratios 
(

μn+1
μn

− 1
)

× n and 
(

d+1μ
dμ

− 1
)

× d both seem to approach 4, suggesting that μn ∼ n4

D

and dμ ∼ d4

E for some constants D and E . Tables 7 and 8 also show values of Dn = n4

μn
and d D = d4

dμ
, respectively. (These 

tables also give values of Cn = n5

tn
and dC = d5

dt
.) These seem to approach limits of around Dn → 16310.5 and d D → 45.301, 

respectively.
Putting all of the above together, we have (very approximate) candidates for asymptotic formulas:

tn = ρn × μn ∼ 0.07122n × n4

16310.5
≈ n5

229016
as n → ∞ (4.16)

and dt = dρ × dμ ∼ 1.1657d × d4

45.301
≈ d5

38.86
as d → ∞. (4.17)

Note that (4.16) and (4.17) are reasonably close to Conjecture 4.1 and (4.4). We should stress, however, that in the above 
discussion we often rounded off certain numbers to seemingly-arbitrary precision. Thus, the asymptotic expressions in (4.16)
and (4.17) are very speculative, and are not meant to be exact predictions.

5. Conclusion

Enumeration of integer triangles of given perimeter is a classical problem [8,11], and polygons have recently been treated 
as well [4]. The current article considered the corresponding problem for tetrahedra, which is considerably more difficult. 
The central theme is the calculation of the numbers tn , dt and dtn of integer tetrahedra with perimeter n and/or diameter 
d (as appropriate), up to congruence. In Section 2 we set up a framework in which these numbers could (in principle) be 
calculated via an application of Burnside’s Lemma, and made some partial progress by finding explicit formulas for some of 
the relevant fix-set parameters. The complexity of the other parameters—and of the numbers tn , dt and dtn themselves—is 
highlighted by the computations discussed in Section 3, and is visible in many of the figures therein. Nevertheless, a number 
of apparent patterns emerged from an exploration of the data. Several of these were discussed in Section 4, which contains 
a number of conjectures and avenues for future exploration; we hope that future studies will shed further light on the 
situation.
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