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Abstract
Information retrieval results are currently limited to the
publication in which they exist. Significance tests are
used to remove the dependence of the evaluation on the
query sample, but the findings cannot be transferred to
other systems not involved in the test. Confidence inter-
vals for the population parameters provide query inde-
pendent results and give insight to how each system is
expected to behave when queried. Confidence intervals
also allow the reader to compare results across articles
because they provide the possible location of a systems
population parameter. Unfortunately, we can only con-
struct confidence intervals of population parameters if
we have knowledge of the evaluation score distribution
for each system. In this article, we investigate the dis-
tribution of Average Precision of a set of systems and
examine if we can construct confidence intervals for
the population mean Average Precision with a given
level of confidence. We found that by standardising the
scores, the system score distribution and system score
sample mean distribution was approximately Normal
for all systems, allowing us to construct accurate con-
fidence intervals for the population mean Average Pre-
cision.

Keywords Information Retrieval, Evaluation

1 Introduction
When publishing information retrieval system evalua-
tion results, the mean score from a sample set of queries
is reported. These results are usually presented with
the confidence in hypothesis test results when compared
with a baseline system. Reporting the sample mean al-
lows the reader to compare the presented set of systems
for the given set of queries, while the hypothesis tests
indicate how well the results generalise to a new sample
of queries.

Unfortunately, there is no method for comparing
systems across publications. We are able to compare
the sample mean scores, but by doing so we have no
indication of how the systems will perform when given
a new sample of queries. Results from hypothesis test
report the confidence in the test, and therefore the tests
information cannot be used to compare systems across
publications. The reader’s only option is to obtain the
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set of systems in each publication and run experiments
to identify if one is more accurate than the other.

By having knowledge of a population parameter,
such as the population mean evaluation score for a sys-
tem, we would be able to compare systems independent
of the sample set of queries used. We are unable to
compute an exact value for the population mean using
a sample set of queries, but we are able to construct a
confidence interval, giving a range in which the popu-
lation mean evaluation score is most likely to exist.

To compute accurate confidence intervals for a pop-
ulation parameter from samples, we must have knowl-
edge of the distribution of the associated sample statis-
tic. In this article, we investigate the distribution of
Average Precision and the sample mean Average Pre-
cision to compute accurate confidence intervals for the
population mean Average Precision.

We make the following important contributions:

• An investigation into how we can report the con-
fidence intervals for the population mean Average
Precision (Section 4 and 5).

• A description on how results should be reported to
allow others to reuse the results (Section 6).

The article will proceed as follows: Section 2 provides
a brief overview of Information Retrieval evaluation,
Section 3 discusses the portability of published Infor-
mation Retrieval results, Section 4 examines the dis-
tribution of Average Precision results and identifies if
we are able to construct accurate confidence intervals.
Section 5 examines the effect of standardisation of the
distribution of Average Precision results. Finally, Sec-
tion 6 presents further details of the confidence interval
we have found.

2 System evaluation
First let us define the retrieval system. A retrieval sys-
tem is a function S(q,D) on query q and document
set D, where S : q × D → RN . The output of the
function S is a vector ~rq,D = {rq,d1 , rq,d2 , . . . , rq,dN }
containing a weighted list, where each weight rq,di is
associated to the relevance of document i in D to query
q.

An evaluation measure is a function mq,D =
E(~rq,D, ~ρq,D) on the weighted document list ~rq,D
and the set of true relevance judgements ~ρq,D, where
E : RN × RN → R. The output of E is a scalar value



which reflects the accuracy of system S on document
set D using query q.

To truly test the accuracy of a system on a document
collection, we would obtain all of the queries that will
be used, along with their probability of use, and com-
pute the expected system accuracy using

E[sD] =
∑
q∈Φ

E(~rq,D, ~ρq,D)P (q)

where P (q) is the probability of issuing query q and Φ
is the population of queries.

Two problems exist with this form of evaluation.
First, the population of queries Φ depends on the fu-
ture use of the system. We could obtain an estimate
of Φ by releasing the system and recording all of the
queries that are used, but there is no way of knowing
how good an estimate this is. Second, for each query
we need a set of relevance judgements for document
set D. For one query, this requires manually judging
the relevance of all documents in D. If D contains
one million documents, we must perform one million
relevance judgements. For k queries, we must perform
k million judgements.

To overcome the first problem, the information re-
trieval community has resorted to using a sample of
queries and treating each query as being equally likely.
This changes the expectation equation to simply com-
puting the mean of a sample:

mD =
∑
q∈Q

E(~rq,D, ~ρq,D)
1

k

where Q ⊂ Φ, k is the cardinality of set Q, and mD is
the sample mean system score over the query sample set
Q. The sample mean is used as an estimate of the popu-
lation mean (expected value), but estimates of how well
this is approximated are not provided in experimental
results.

To overcome the second problem, methods such as
pooling [3] can be used to reduce the load of this task,
but significant effort must still be placed into this pro-
cess.

By themselves, the sample mean evaluation scores
are limited in their use. The sample mean scores are
used in most retrieval experiments to compare against
the sample mean retrieval scores of another system,
where both systems are evaluated using the same
sample.

To remove the dependence of the evaluation on
the query sample, a paired hypothesis test (e.g. the
Wilcoxon signed rank test) for an increase in evaluation
score can be performed for a pair of systems. The
result from the test is the level of confidence of the first
system providing a greater score than the second for a
randomly sampled query.

3 Portability of results
We showed in the previous section that we are able to
compare two retrieval systems using a paired signifi-
cance test. To conduct the test, we require the evalua-
tion score for each system for a specific set of queries.

Therefore, if we have access to both systems Sx and
Sy , and we have a document set D, a random sample
of queries Q and the associated relevance judgements,
we simply generate the system score using a suitable
evaluation metric E and compare the paired evaluation
scores using a significance test.

If a reader obtains two publications that have devel-
oped new systems Sx and Sy respectively, the reader
is unable to determine from the published results in
both articles if there is any statistically significant dif-
ference in results between systems Sx and Sy . The
reader should be able to compare the sample means
of each system from each article as an estimate of the
expected performance of each system, but the reader
would have no knowledge of the accuracy of the esti-
mation. Paired significance tests would be provided in
each article, but the paired test results only apply to the
systems involved in the test and give no indication of
how the system compares with others not involved in
the test.

At the moment, the only way to compare two sys-
tems that appear in separate publications is to obtain the
systems and run our own experiments. This implies that
the current method of reporting information retrieval
results limits the evaluation to the publication. We are
unable to compare retrieval evaluations across articles
and therefore our results are not portable.

To provide portable results, all retrieval experiments
should provide details of system population parameters.
Population parameters provide details on how the eval-
uated system behaves independent of the query sample
used and can also provide us with information such as
the expected evaluation score for the system.

Since system population parameters are indepen-
dent of the query sample, we are able to compare
the values of multiple systems across different
publications, making the results portable.

If we obtain a sample from a given population, we
are not able to compute the exact value of population
parameters, but we can compute a confidence interval
for a population parameter using statistical methods.
Therefore, if we have a set of evaluation scores for a
given system obtained from a sample set of queries, we
are able to compute a confidence interval for a certain
population parameter.

For each confidence interval, we need an associ-
ated confidence level, where the confidence level is re-
lated to the probability of a Type I error occurring (the
probability of the population parameter not being in the
interval). For a confidence interval to be useful, the
probability of a Type I error should be low.

To accurately compute the probability of a Type I
error for a given confidence interval, we need to know
the distribution function associated to the sample data.
Therefore to compute the confidence level of a confi-
dence interval for a given system, we need to know
the distribution function of the evaluation score distri-
bution. To the best of our knowledge, there has been no
study into the distribution of retrieval system evaluation
scores.



In the following sections we will investigate the dis-
tribution of Average Precision over a set of systems and
identify how we can use the distribution to construct
a confidence interval for the population mean Average
Precision with an associated accurate measure of Type
I error.

A system’s population mean evaluation score is the
expected score for a randomly sampled query. This
parameter is of interest because it provides us with a
measure of how well the system will perform when
provided with an unknown query. There has been much
research into computing the confidence interval of
the population mean for given distributions, therefore
we will use the knowledge from the prior research
and identify how well it applies to a set of system
distributions.

To compute the confidence interval for a system
population mean Average Precision (AP), we must

1. identify the distribution of the sample mean AP,

2. compute an estimate of the parameters of the sam-
ple mean AP distribution given the sample,

3. finally, identify the quantiles of the distribution
that contain the desired level of confidence.

4 Average Precision Distribution
To test the validity of confidence interval experiments,
we require knowledge of the population statistics of the
system score distributions. A system score distribution
is the probability of obtaining a particular score from a
randomly sampled query for the given retrieval system
on a given document set. System score distributions
have not been computed or approximated for any re-
trieval system (to the best of our knowledge). Therefore
we will approximate a set of system score distributions
using the scores from a large sample of queries.

In this article, we have used the system scores from
the TREC 2004 Robust track. The TREC Robust track
contains 249 queries and results from 110 retrieval sys-
tems on a document collection containing 528, 155 doc-
uments from TREC disks 4 and 5 (excluding the Con-
gressional Record document set).

We will use the following notation:

• AP is the Average Precision from a sample query
for a given system,

• AP is the sample mean Average Precision for a
given system from a sample of n queries (usually
known as mean Average Precision),

• µAP is the population mean Average Precision for
a given system,

• sAP is the sample standard deviation Average Pre-
cision for given system from a sample of n queries,

• σAP is the population standard deviation of Aver-
age Precision for a given system,

Sample mean AP distribution (n = 5)
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Figure 1: Distribution of a randomly sampled system’s
sample mean (AP) using n = 5.

• σAP is the population standard deviation of the
sample mean Average Precision for a given
system.

Using the TREC Robust data, we are able to estimate
the population parameters using the set of 249 queries
and the sample statistics using a smaller subset of the
queries. For example, µAP is computed for a given
system by computing the mean across all 249 queries,
while AP is computed using a small subset of the
queries (such as n = 10).

4.1 Confidence when σAP is known
In this section we will examine the accuracy of a con-
fidence interval under the assumption that AP follows a
Normal distribution and σAP is known for each system.

The Central Limit Theorem [2] tells us that given
a Normally distributed random variable x with mean
µ and standard deviation σ, its sample mean x is also
Normally distributed with mean µ and standard devia-
tion σ/

√
n, where n is the number of samples taken.

The Central Limit Theorem also tells us that if x
is not Normally distributed, but our sample size, n is
large (n > 30), then the sample mean is approximately
Normal with mean µ and standard deviation σ/

√
n.

A histogram of a typical system’s AP is shown in
Figure 1. It shows that the sample mean is approxi-
mately Normal. This is also the case for all other sys-
tems. Therefore, to begin, we will assume that a sys-
tem’s AP follows a Normal distribution, where each
system distribution is characterised by its mean µAP and
standard deviation σAP.

We will also assume that we know each systems
standard deviation (σAP). This is not a useful assump-
tion in practice, but it will allow us to investigate if our
assumption of Normality is valid.

Given that AP is Normal for each system, we can
compute the confidence interval of µAP using:



µAP ∈ AP± Zα/2σAP/
√
n (1)

where α ∈ [0, 1] is the probability of a Type I error, the
level of confidence is 100(1−α)%, and Zα/2 is the α/2
quantile of the Standard Normal distribution (meaning
that 100(1 − α)% of the Standard Normal distribution
lies between −Zα/2 and Zα/2).

Our first experiments examines the Type I error (α)
of the confidence interval. Using a set of 110 system
scores, we compute an estimate of µAP and σAP using
the AP results from all 249 queries. By taking a random
sample of n = 5 AP scores for a particular system,
we are able to compute the confidence interval of µAP
and compare it to the our computed value of µAP. If
µAP does not lie within the confidence interval, a Type
I error has occurred. The value of α provided in the
confidence interval calculations is the expected Type I
error. Therefore, repeated experiments should show the
Type I error of the confidence interval to be equal to
α. For our experiment, we computed 1000 confidence
intervals for each system, from random samples of n =
5 AP scores. The results are presented in Table 1

Table 1: The actual Type I error produced when
computing µAP confidence intervals using knowledge
of σAP, given α. The mean, standard deviation and
maximum across all systems are computed from 1000
confidence intervals using n = 5 for each system.

α
Type I error

Mean SD Max

0.050 0.040 0.005 0.051
0.100 0.088 0.009 0.109
0.150 0.139 0.012 0.161
0.200 0.191 0.014 0.208
0.250 0.242 0.014 0.269
0.300 0.295 0.013 0.320
0.350 0.348 0.011 0.376
0.400 0.400 0.010 0.424
0.450 0.452 0.010 0.482
0.500 0.502 0.010 0.533

If the system sample mean distributions are Normal,
we would expect to see that the Type I error from all
systems be close to the given α. The results show that
the Type I error across all systems is close to the value
of α implying that the confidence interval being used is
correct. Similar results are obtained when using other
values of n. These results imply that our assumption
that AP is Normal is valid.

4.2 Confidence when σAP is unknown
In the previous section we assumed that σAP is known,
which would not be the case when estimating a confi-
dence interval, but it allowed us to examine the assump-
tion that AP followed an approximate Normal distribu-
tion.

In this section, we assume that σAP is unknown and
therefore we must approximate its value with our sam-
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Figure 2: Distribution of a randomly sampled system’s
scores (AP).

ple standard deviation sAP. If AP follows a Normal
distribution, then Cochran’s theorem [1] provides us
with:

(n− 1)s2
AP

σ2
AP

∼ χ2
n−1 (2)

where∼ infers equality of distributions and χ2
n−1 is the

Chi-squared distribution with n−1 degrees of freedom.
Figure 2 shows a typical system AP distribution,

which does not look Normal, which may infer that the
relationship in Cochran’s theorem is not valid. The Q-Q
plot in Figure 3 shows that the relationship in Cochran’s
theorem is valid except at the higher end of the scale,
implying that the χ2 distribution has a longer tail than
the variance ratio ((n − 1)s2

AP/σ
2
AP). This implies that

score samples with high standard deviation will provide
an under estimate of the confidence interval.

By estimating σAP with sAP using the relationship
in equation 2, we arrive at the confidence interval rela-
tionship:

µAP ∈ AP± tα/2,n−1sAP/
√
n (3)

where tα/2,n−1 is the α/2 quantile of the Student’s t
distribution with n − 1 degrees of freedom (meaning
that 100(1 − α)% of the t distribution lies between
−tα/2,n−1 and tα/2,n−1).

Table 2 shows the results from computing 1000 con-
fidence intervals for each system from samples of n = 5
scores, using equation 3. Note that if the system scores
were Normally distributed, the computed Type I error
would be similar to the given α. We can see that The
mean Type I error is greater than α implying that we
are under estimating the confidence interval width. The
column providing the maximum Type I error shows a
large underestimate of the confidence interval. This
can be explained from our observation of the Q-Q plot
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Figure 3: The Q-Q plot of the χ2
n−1 distribution against

the (n− 1)s2
AP/σ

2
AP distribution, for n = 5.

in Figure 3, showing that the samples that had larger
variance do not follow the χ2

n−1 distribution.

Table 2: The actual Type I error produced when
computing µAP confidence intervals using sAP, given α.
The mean, standard deviation and maximum across all
systems are computed from 1000 confidence intervals
using n = 5 for each system.

α
Type I error

Mean SD Max

0.05 0.082 0.027 0.255
0.10 0.133 0.027 0.299
0.15 0.179 0.026 0.340
0.20 0.224 0.024 0.377
0.25 0.269 0.021 0.407
0.30 0.315 0.020 0.440
0.35 0.362 0.018 0.480
0.40 0.410 0.018 0.520
0.45 0.458 0.018 0.559
0.50 0.504 0.018 0.602

We now have the problem that we are unable to
obtain a good estimate of the score population standard
deviation σAP and hence unable to obtain an accurate
confidence interval for µAP from a sample of scores.
To proceed, we must either obtain the distribution of
(n−1)s2

AP/σ
2
AP, or find a mapping that provides us with

Normally distributed AP. In the next section, we will
examine the latter using score standardisation.

5 Standardised AP
Score standardisation was introduced as a method of
allowing cross collection comparison of system scores

[4]. In this section, we will examine the effect of stan-
dardisation on the distribution of AP and its effect on
confidence interval estimations.

Standardised AP is defined as:

sAPq =
APq − APq

sAP,q

where sAPq is the standardised AP for a given system
on query q, APq is the Average Precision for the given
system on query q, APq is the mean AP across a set of
systems for query q, and sAP,q is the standard deviation
across a set of systems for query q. From this definition,
we can see that standardisation is highly dependent on
the set of systems (from which APq and sAP,q are com-
puted). Therefore, we will begin the investigation using
all systems to perform the standardisation and finish by
examining the effect of using a small sample to perform
standardisation.

We will use the following notation:

• sAP is the standardised Average Precision from a
sample query for a given system,

• sAP is the sample mean standardised Average
Precision for a given system from a sample of n
queries,

• µsAP is the population mean standardised Average
Precision for a given system,

• ssAP is the sample standard deviation standardised
Average Precision for given system from a sample
of n queries,

• σsAP is the population standard deviation standard-
sed Average Precision for a given system,

• σsAP is the population standard deviation of the
sample mean standardised Average Precision for
a given system.

where µsAP and σsAP are estimated using all 249
queries.

5.1 Standardisation using all systems
In this section we will use all 110 systems to com-
pute the mean and standard deviation of each query
to perform standardisation. Note that when perform-
ing retrieval experiments, it would be unlikely to have
evaluated 110 systems on the set of queries being eval-
uated. Therefore, this section is similar to a ‘best case’
analysis. We also present the confidence intervals for
when σsAP is known and unknown to identify where any
problems in our assumptions lie.

5.1.1 Confidence when σsAP is known

By performing the standardisation, we obtain a sAP
score for each query. To establish the confidence inter-
val for µsAP, we must deduce the distribution of sAP.
A histogram of the distribution of a system’s sAP is
shown in Figure 4. We can see that the particular sys-
tem sample mean sAP is approximately Normal. If we
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Figure 4: Distribution of a randomly sampled system’s
sample mean (sAP) using n = 5.

examine the AP distribution in Figure 1, we find that
the sAP distribution is less skewed giving it a more
Normal appearance. This Normality implies that we
should obtain accurate confidence intervals when the
system population standard deviation σsAP is known.

To compute the accuracy of the confidence interval
estimates when σsAP is known, we used equation 1 and
replaced AP with sAP. Samples of size n = 5 were
used to compute the confidence interval and compared
to µsAP. If µsAP was not in the confidence interval, a
Type I error occurred. This was repeated 1000 times for
each system. The probability of a Type I error is listed
in Table 3. Table 3 reports the mean, standard deviation
and maximum probability of a Type I error across all
systems. The table shows mean and maximum values
similar to the associated values of α, and small standard
deviation. This implies that the confidence intervals
produced are accurate.

5.1.2 Confidence when σsAP is unknown

We have found that the Normal distribution is a good
approximation for the distribution of sAP. In this sec-
tion we will examine if we can approximate σsAP using
ssAP and Cochran’s theorem (equation 2).

Cochran’s theorem is valid under the assumption
that the data follows a Normal distribution. The his-
togram of a sample system’s sAP in Figure 5 shows
that sAP is approximately Normal. To examine if this
approximation is close, we have also examined the Q-Q
plot of the variance ratio on the left hand side of equa-
tion 2 compared to the χ2 distribution on the right hand
side of equation 2. The plot (given in Figure 6) shows
that the two distributions are approximately equal, sug-
gesting that we are able to use ssAP to approximate σsAP.

The confidence interval is computed using equation
3, where we replace all occurrences of AP with sAP.
We investigated the accuracy of the confidence interval

Table 3: The actual Type I error produced when com-
puting µsAP confidence intervals using σsAP, given α.
The mean, standard deviation and maximum across all
systems are computed from 1000 confidence intervals
using n = 5 for each system.

α
Type I error

Mean SD Max

0.050 0.046 0.006 0.062
0.100 0.094 0.009 0.118
0.150 0.142 0.012 0.175
0.200 0.192 0.014 0.221
0.250 0.243 0.015 0.273
0.300 0.292 0.016 0.324
0.350 0.342 0.016 0.376
0.400 0.392 0.016 0.424
0.450 0.443 0.017 0.474
0.500 0.493 0.017 0.533
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Figure 5: Distribution of a randomly sampled system’s
scores (sAP).

by computing the confidence interval for 1000 samples
of n = 5 queries for each system for varying levels ofα.
Statistics of the Type I error are reported in Table 4. We
can see that the expected Type I error (mean) is close
to the given α, showing that the confidence interval is
accurate.

5.2 Standardisation using a few systems
We mentioned in the previous section that it is unlikely
that we would have the results from 110 systems to
perform standardisation. Therefore in this section, we
will examine the effect of using a random sample of five
systems to perform standardisation.

To test the accuracy of our confidence intervals, we
ran the same Type I error experiment from Section 5.1.2
except we used only five randomly sampled systems
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Figure 6: The Q-Q plot of the χ2
n−1 distribution against

the (n− 1)s2
sAP/σ

2
sAP distribution, for n = 5.

Table 4: The actual Type I error produced when com-
puting µsAP confidence intervals using ssAP, given α.
The mean, standard deviation and maximum across all
systems are computed from 1000 confidence intervals
using n = 5 for each system.

α
Type I error

Mean SD Max

0.050 0.050 0.010 0.090
0.100 0.097 0.011 0.143
0.150 0.146 0.012 0.195
0.200 0.195 0.014 0.248
0.250 0.245 0.016 0.294
0.300 0.295 0.017 0.334
0.350 0.346 0.018 0.383
0.400 0.397 0.019 0.441
0.450 0.448 0.020 0.508
0.500 0.499 0.020 0.559

for standardisation. The results from the experiment
are shown in Table 5. We can see that the expected
(mean) Type I error follows α closely. In comparison to
Table 4, we can see that the difference between α and
the expected Type I error has increased. We can also
see that the variance has increased. Therefore, reduc-
ing the number of standardisation systems has slightly
decreased the accuracy of the confidence intervals, but
they are more accurate than when using AP.

Note that the population mean and standard devia-
tion are dependent on the standardising systems chosen,
therefore, we cannot compare system confidence inter-
vals when the systems have used different standardisa-
tion systems.

Table 5: The actual Type I error produced when com-
puting µsAP confidence intervals using ssAP and five
randomly sampled standardisation systems, given α.
The mean, standard deviation and maximum across all
systems are computed from 1000 confidence intervals
using n = 5 for each system.

α
Type I error

Mean SD Max

0.050 0.062 0.017 0.157
0.100 0.114 0.021 0.212
0.150 0.166 0.024 0.270
0.200 0.217 0.025 0.312
0.250 0.270 0.026 0.358
0.300 0.324 0.025 0.408
0.350 0.379 0.025 0.468
0.400 0.435 0.025 0.520
0.450 0.491 0.026 0.579
0.500 0.543 0.025 0.634

Table 6: The change in Type I error as n increases,
where α = 0.05 and σAP and σsAP are unknown.
n 2 5 10 20 50

AP error 0.081 0.083 0.066 0.053 0.029
sAP error 0.050 0.062 0.068 0.068 0.054

6 Examination of Confidence Intervals
Confidence intervals are useful for identifying the likely
region in which the system population mean exists. As
the interval grows, the utility decreases. E.g. we could
provide a 100% confidence interval for µAP as [0, 1].
This is accurate, but does not provide us with any infor-
mation since the confidence interval covers the domain
of AP. In this section, we will examine the confidence
intervals that were computed in the previous sections.

For the previous experiments, we have used n = 5
queries. We now examine the accuracy of our confi-
dence intervals as the number of queries n increases
(when σAP and σsAP are unknown and using five stan-
dard systems). We can see in Table 6 that the Type I
error for µsAP is stable, while the Type I error for µAP re-
duces as n increases. This can be explained by the vari-
ance ratio ((n−1)s2

sAP/σ
2
sAP) following a χ2

n−1 distribu-
tion. The t distribution, used to compute the confidence
interval, is constructed by combining the uncertainty in
σsAP given by the χ2

n−1 distribution with the Standard
Normal distribution in equation 1. Since the variance
ratio of sAP approximately follows a χ2

n−1 distribution,
the t distribution compensates for the change in n. The
variance ratio of AP does not follow a χ2

n−1 distribu-
tion, therefore the t distribution poorly compensates for
n.

The confidence interval equation (shown in Equa-
tion 3) is centered at the sample mean sAP and its width
is dependent on the sample standard deviation sAP, the
error rate α and the number of samples n. The sam-



Table 7: The change confidence interval (CI) width
for sAP as n increases, where α = 0.05 and σsAP is
unknown.
n 2 5 10 20 50

CI width 20.217 3.456 2.172 1.518 0.981

ple mean and standard deviation of the system score
are under our control in an experimental environment,
since they are the responses we are examining. In all
information retrieval experiments, we have direct con-
trol over n, the number of queries used in the retrieval
experiment, and α.

By increasing α we decrease the confidence
interval, but we also decrease the confidence of the
confidence interval. By increasing n, we decrease the
confidence interval, but increasing n involves using
a larger query set, which (if not already available)
involves building the relevance judgements for the new
queries. If queries are available, they should be used
to increase n and obtain a narrower confidence interval
that will be more useful for identifying the location of
µsAP.

The standard deviation of the set of all sAP scores
across all 110 systems, each using 1000 different ran-
domly sampled sets of five standardisation systems is
2.436. Therefore, Table 7 shows that we need to use
n = 10 queries to get an expected confidence inter-
val width that is less than the standard deviation of the
samples sAP. This is not a benchmark, but simply an
indicator to compare the size the confidence intervals
relative to the data.

Table 8: Type I error for the µsAP confidence interval
(with unknown σsAP) on the 40 systems from TREC-3,
using 1000 samples of n = 5 queries for each system
and five standardisation systems.

α
Type I error

Mean SD Max

0.050 0.055 0.021 0.142
0.100 0.104 0.024 0.204
0.150 0.153 0.025 0.249
0.200 0.203 0.026 0.293
0.250 0.253 0.024 0.340
0.300 0.303 0.026 0.379
0.350 0.355 0.027 0.421
0.400 0.409 0.028 0.471
0.450 0.462 0.028 0.525
0.500 0.514 0.027 0.572

To test the generalisation of our results, we
examined the accuracy of the confidence interval
method from Section 5.2 on results from TREC-3.
The results in Table 8 show an expected Type I error
close to the value of α, with small standard deviation.
This implies that this method of computing confidence
intervals does generalise.

To report results so that others are able to compare
new systems, we need to report the sample mean and
sample standard deviation of Average Precision, and the
number of queries used. We also need to report which
systems were used to perform standardisation. Note
that these systems must be freely available systems. If
others do not have access to the set of standardisation
systems, the confidence intervals cannot be compared.
Once these items are reported, others can compute com-
parative confidence intervals without access to our sys-
tem, queries or relevance judgements.

7 Conclusion
Current forms of information Retrieval report a sample
mean and the confidence obtained using paired hypoth-
esis tests. These values provide the reader with knowl-
edge of which system is more accurate from those tak-
ing part in the experiment. Unfortunately, these values
do not provide the reader with any means of comparing
systems found published in different articles. We can
use the system’s sample mean as an estimate of the sys-
tem’s population mean (expected value), but the reader
has no knowledge of the accuracy of this estimate.

To compare systems across publications, we would
need some indication of the systems population param-
eters. From sample statistics, we are able to compute a
confidence interval of the population mean given a cer-
tain level of confidence, as long as the sample follows a
known distribution function.

In this article, we investigated the distribution of
Average Precision for a set of systems and examined
if we could construct accurate confidence intervals of
the population mean Average Precision from a system’s
sample statistics.

We found that accurate confidence interval could
be constructed when score standardisation was applied.
Our analysis showed that we could obtain highly ac-
curate confidence intervals for any number of sample
queries while using only five standardisation systems.
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