
Fire Load Density Distribution in School
Buildings and Statistical Modelling

Andrew Barnett, Scientific Fire Services Pty Ltd, Norwood, Australia

Chunjie Cheng *, School of Environment and Resource, Southwest University
of Science and Technology, Mianyang, China

Mahmut Horasan, Scientific Fire Services Pty Ltd, Norwood, Australia

Yaping He, School of Built Environment, Western Sydney University, Sydney,
Australia

Laurence Park, School of Computer, Data and Mathematical Sciences, Western
Sydney University, Sydney, Australia

Received: 15 November 2020/Accepted: 22 June 2021/Published online: 22 July 2021

Abstract. Reported in this paper is an exercise that contributes to the fire load data-
base for fire severity analysis. The movable fuel load data was collected by the
weight-inventory method from a specific building type, namely school buildings loca-

ted within the metropolitan area of Sydney, Australia. The data was analysed to
obtain statistical descriptions of fire load density in terms of probability density dis-
tributions. The results were compared with the similar data obtained from other
countries. It was found that while basic statistical characteristics show similarities

globally, some other characteristics, particularly the 90th percentile, may differ from
one country to the other. This outcome suggests that fire load selection for design
fires in fire safety engineering design and assessment should be better based on local

data and a careful review of the unified approach in the international fire engineering
guidelines is warranted.
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1. Introduction

Fire load is one of the important parameters in fire safety engineering design and
assessment [1]. Traditional fire engineering design for building occupant life safety
and fire resistance design for building structure protection are often based on
deterministic timeline analysis of available safe evacuation time vs the required
safe evacuation time or fire resistance level vs fire severity. In this kind of
approach, one or limited number of design fires are selected as design references.
To deal with uncertainties in the design, safety factors are introduced to augment
the design values and make them err on the safer side [2]. Such an approach has,
in most cases, resulted in adequate protection of building occupants and struc-
tures. However, there have been questions as to what is the appropriated value of
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the safety factor and how much are we erring on the safer side. These questions
stem from the desire to develop reliable and cost-effective performance-based fire
safety engineering solutions.

Recent decades have seen the advancement in building fire regulations with of a
trend toward risk informed performance based building codes [3]. This kind of
regulations allow for more objective and quantifiable performance requirements to
be introduced. However, to support such a development, it is essential that appro-
priate verification methods and databases are established.

Against the traditional deterministic approach, the risk based, or the probabilis-
tic approach has been termed as the second generation performance-based engi-
neering approach to fire safety design by some scholars (e.g., Khorasani et al. [4]).
This approach has the advantage over the deterministic approach in that it deliv-
ers quantifiable risk parameters in the assessment of engineering design solutions.
It is capable of dealing with complex phenomena which are influenced by parame-
ters exhibiting random characteristics.

Fire load density is a parameter that behaves randomly. It not only depends on
the type of occupancy, but also varies drastically within the same type of occu-
pancy. Office buildings appear to be the most surveyed classification [5–8] fol-
lowed by residential dwellings [9, 10], shopping centres [11, 12] and hotels [13].
Attempts were made by many researchers to characterise the surveyed data with
various probability density distribution functions. For example, Melinek [12],
Zalok et al. [10, 13], Kumar and Rao [14], Thauvoye et al. [15], Xie et al. [16],
Hadjisophocleous and Zalok [17] tried to fit fire load data with normal, lognor-
mal, Gumbel and other distributions for a range of building types including com-
mercial, residential and office buildings. These researchers indicated that the
lognormal distribution is a better fit than normal, Gumbel and other distributions.
This outcome provided further support to the recommended model by CIB [18].
On the other hand, the normal distribution was found to have a good fit to the
fire load for residential buildings by Bwalya et al. [19]. Khorasani [4] thought the
Beta distribution provided a good fit for fire load in US office buildings. Zalok
[20] found the fire load density in Canadian office buildings to follow the Gumbel
distribution. Liu [21] regarded that both generalized extreme value and log-logistic
distributions have a good fit for residential building fire load in Beijing, China. A
summary of some selected fire load surveys and the regression modeling of proba-
bility density distributions obtained from the literature is given in Table 1.

School buildings belong to a special category where both occupant load and fire
load could be high [22]. However, field surveys of fire load in school buildings are
sparse in the literature, let alone the statistical modelling of the fire load data. As
can be seen in the above Table 1, the available data in the literature mostly origi-
nated from the northern hemisphere and few have originated from the southern
hemisphere. There is a likelihood that statistics of fire load densities differ from
region to region as well as from country to country. In addition, it would be
preferable to have information about the analytical method and evaluation criteria
in the regression modelling such that confidence may be cast or uncertainty may
be evaluated when applying the models in risk based fire engineering assessment.
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The aim of the current study is to investigate probabilistic descriptions of the
fire load density distribution in typical Australian school buildings. Fire load data
were collected from a number of primary and secondary school buildings in Syd-
ney metropolitan area. The collected fuel load data were segregated against enclo-
sure types (e.g., library, laboratory, classroom, storeroom, etc.) and school types
(e.g. primary and secondary). Meanwhile, the floor areas of these enclosures were
surveyed. The collected data were converted into fuel load density and were sub-
jected to statistical analysis using the R programming language. The criteria for
selecting the probability density distribution function for fire load density were
established on the basis of the nature of the parameter and its application in fire
safety engineering design. Four candidature probability density distribution func-
tions were selected for regression analysis and their goodness of fit were com-
pared.

The results of the mean, standard deviation and certain percentile values of fuel
load distributions are also analysed and compared with the data obtained from
other countries in the world where similar studies were conducted. The outcome
of this research will contribute to the international database for fire safety engi-
neering practice.

Table 1
Summary of Fire Load Studies in the Selected Literature*

Source and

date Model Country

Building

class

Regression

method

Evaluation

method Tool

[12] 1993 Lognormal and

normal

UK, US O MLE UN UN

[19] 2004 Normal Canada R UN UN UN

[13] 2005 Lognormal Canada C UN UN UN

[17] 2008 Lognormal Canada C UN UN UN

[15] 2008 Lognormal Switzerland C TAE C–S UN

[15] 2008 Lognormal and

Gumbel

France P QME C–S UN

[10] 2009 Lognormal Canada C UN K–S & P–V R &

Easy-

fit@

[21] 2012 Gev and log

logistic

China R MLE K–S MATLAB

[20] 2013 Gumbel Canada O QME K–S Easyfit@

[4] 2014 Beta US O BPA UN UN

[16] 2019 Lognormal and

normal

China O BIT UN UN

[22] 2010 NA Canada S NA NA NA

*O = office; R = residential; C = commercial; PB = public; S = school, NA = not available; UN = unknown;

MLE = maximum likelihood estimation; MME = moment matching estimation; QME = quantile matching

estimation; BIT = Bayesian inference theory; BPA = Bayesian probability approach; TAE = try and error; C–

S = Chi-square test; K–S = Kolmogorov–Smirnov test; P–V = P-value test
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2. Data Collection and Initial Processing

Combustible materials in building compartments can be largely divided into two
categories: fixed fuel load and moveable fuel load [4]. The former is usually fixed
with the building structures (such as walls, floor, ceiling and doors) and has less
variability during the lifetime of the buildings. In contrast, the latter is associated
with the portable building contents, has a much greater variability, hence, uncer-
tainty from fire safety engineering design point of view and, therefore, received
much attention in fire load survey studies [22, 23]. In the current study, focus is
given to the fire load density evaluated from the moveable fuel load. Unless other-
wise specified, fire load and related parameters in the remaining text refer to that
of moveable fire fuel.

Fuel load data was collected from three schools located within the Sydney
metropolitan area. One of the schools was a primary school and the others were
combined primary and secondary (or high) schools. The buildings surveyed gener-
ally ranged between 3 to 90 years old with the majority of buildings being over
50 years. The size and extent of buildings varied from single storey blocks to four
storey multi-compartment buildings. The compartments or rooms were classified
according to their usage. The sample size, or the total number of rooms surveyed,
was 85. An overview of the surveyed rooms is given in Table 2.

The combined weight-inventory method [24, 25] was employed in the current
study to collect fuel load data from various enclosures in the school buildings. In
this method, direct access to building compartments is required. Fuel mass in each
compartment is either weighted directly or measured by volume then multiplied by
density values obtained from the literature. In the meantime, the floor area, A, of
the compartment is also measured. The fire load density, q, is then calculated
from [22]:

Table 2
Overview of Surveyed Rooms

Room use

School-1

Number

School-2

Number

School-3

Number

Classroom-primary 19 4 8

Classroom-secondary - 13 7

Science room - 3 5

Visual arts studio - 4 3

IT room 1 2 –

Library 1 2 2

Storeroom 6 - -

Other# 4 1 -

TOTAL 31 29 25

#The ‘Other’ category includes: assembly halls, after school cares, tutor rooms and bag rooms
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q ¼ 1

A

X

i

kimiDHi ð1Þ

where mi and DHi are the mass and heat of combustion of the ith item in the
compartment respectively, ki is the proportion of the ith item that can burn, or
the effective burning efficiency. In the current study, the value of 1 was assigned
to all ki as the worst case. The mass of an item is either obtained from the weight-
ing or from the following scheme:

mi ¼
qiVi forvolumetirc items
siTi for textile or surface items

�
ð2Þ

where qi and Vi are material density (kg/m3) and measured volume (m3) of ith
item respectively, si and Ti are area density (kg/m2) and measured area (m2) of the
ith item respectively, if the item is textile or surface material.

The properties (density and heat of combustion) of typical combustibles for the
evaluation of fire load were acquired from the literature and are listed in Table 3.

3. Result and Analysis

3.1. General Statistical Analysis

A summary of the room classification and the general statistics of the moveable
fire load density for each type of rooms as well as for the total of 85 samples is
given in Table 3. Data from International Fire Engineering Guidelines (IFEG) [1]
and Eurocode 1 [27] are also included in the table for comparison.

It can be observed from Table 4 that the fire load density in primary classrooms
on average is approximately 1.5 times that of the secondary classrooms. In this
regard, primary classrooms were noticed to contain more storage furniture (e.g.
cabinets, bookshelves) as well as contents (e.g. computers, books and toys),
whereas secondary classrooms typically contained one (1) piece of storage furni-
ture (e.g. shelving unit) and limited content (e.g. computer and books).

In comparison, the mean and the 80th percentile fire load density values nomi-
nated by Eurocode for classrooms and libraries are higher than that obtained in

Table 3
Combustible Material Type and Properties for Fuel Mass and Fie Load
Evaluation

Material DH (MJ/kg) Reference q (kg/m3) References

Wood 18.6 [10] 450 [25]

Paper 17.0 450

Plastic 22.1 1500 [26]

Textile 19.0 2.60 (kg/m2)
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the current study. Comparing the percentile values of the overall school result of
the current study with that of IFEG, it is seen that the 90th and 95th percentile
fire load density values of IFEG are lower than the corresponding results obtained
in the current study. Whereas the 80th percentile value of fire load density of
IFEG is higher than the current study.

The International Fire Engineering Guidelines (IFEG) (ABCB 2005) presents
fire load data from studies undertaken in Switzerland (1967-69) and the Nether-
lands (1983). In addition, a large amount of variable (i.e. moveable) fire load data
is provided relating to a broad range of occupancy types. With respect to school
buildings, the fire load data presented by IFEG is reproduced in Table 5 (Switzer-
land) and Table 6 (Netherlands) below.

3.2. Probability Density Distribution Modelling

3.2.1. Probability Density Distribution Function Selection Fire load is a non-nega-
tive real valued parameter. Past studies that have been listed in Table 1 and
beyond have shown that histograms of fire load data collected from various build-

Table 4
Summary of Movable Fire Load Density According to Room Usage

Room use Sample size

Fire load density (MJ/m2)

Min Max Mean STD

Percentile

80th 90th 95th

Classroom-primary 31 19.0 297 149 57.0 171 229 249

Classroom-secondary 20 55.0 274 107 47.0 127 139 163

Science room 8 42.0 163 69.0 41.0 79.0 114 138

Visual arts studio 7 61.0 149 100 28.0 114 128 138

IT room 3 84.0 440 206 202 302 371 405

Library 5 213 886 551 322 879 882 884

Storeroom 6 534 4860 2330 1680 3490 4180 4520

Other* 5 94.0 297 297 292 357 583 697

Overall 85 19.0 4860 316 710 232 525 884

Eurocode—Classroom - - 285 - 347 - -

Eurocode—Library - - - 1500 - 1824 - -

IFEG [1] - - - - - 360 410 450

*The ‘Other’ category includes assembly halls, after school cares, tutor rooms and bag rooms

Table 5
Fire Load Densities (Switzerland) (IFEG, ABCB 2005)

Type of occupancy Fabrication (MJ/m2)

School 300
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ings usually have a single peak and a long tail skewed toward the right, or the
high end of the range. The considerations given to the selection criteria of the
probability distribution functions are outlined below:

(1) The nature of fire load demands that the domain of the distribution function
is R+, i.e., x 2 [0, ¥), and the function is non-monotonic and has a uni-
modal;

(2) The distribution gives a reasonable goodness of fit;
(3) The distribution is versatile and robust in its application. In other words, it is

easy to use.

A preliminary screening of the probability distribution function using Criteria
(1) resulted in four candidature functions: namely the general extreme value
(Gev), lognormal, Weibull, and Gamma distributions.

A number of methods were then used to conduct regression analysis to fit vari-
ous distributions to the raw fire load data. These include the maximum likelihood
method, the method of moments, the cumulative method, …etc. in R language
package [10].

Previous studies [10, 14, 15, 21] found extreme value (General, Gumbel, Wei-
bull) distributions to provide a better fit as compared to other distributions. The
expressions of these distributions are presented below.

1. The general extreme value (Gev) distribution [28] is widely used in the treat-
ment of ‘‘tail risks’’ in fields such as finance and natural hazards [29]. The
probability density function of the Gev distribution for the k „ 0 case is given
as:

f xð Þ ¼ 1

r
1þ k

x� l
r

� �� 1
kþ1ð Þ

exp � 1þ k
x� l
r

� ��1
k

� �
ð3Þ

where k, r (> 0) and l are called shape, scale and location parameters respec-

tively. The domain of the distribution is x > l� r
k

� �
.

2. The Weibull distribution (also named the Type III extreme value distribution
[20, 30]) has a probability density function given by:

Table 6
Fire Load Density in Different Occupancies (Netherlands) (IFEG, ABCB
2005)

Densities in mega-joules per square metre

Occupancy Mean (MJ/m2)

Percent fractile *

80 90 95

Schools 285 360 410 450

*The percent fractile is the value that is not exceeded in that percent of the rooms or occupancies
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f x; k; kð Þ ¼
k
k

x
k

� �k�1
e� x=kð Þk x � 0
0x < 0

�
ð4Þ

where x 2 0;1½ Þ, k and k (> 0) are called scale and shape parameters respec-
tively.
3. According to the literature [10, 12–17, 19], fire load density is often considered

to be lognormal distributed. The probability density function of the lognormal
distribution is given by:

f xð Þ ¼ 1

xr
ffiffiffiffiffiffi
2p

p e�
1
2

lnx�l
rð Þ2 ð5Þ

where x 2 0;1ð Þ, and l and r (> 0) are mean and standard deviation respec-
tively.
4. The Gamma distribution function also has a non-negative domain (x > 0) and

is, therefore, selected as a candidature function for regression analysis. The
probability density function of the Gamma distribution is given by:

f xð Þ ¼ baxa�1e�bx

C að Þ ð6Þ

where aandb(> 0) are called shape and rate parameters, respectively.

In the context of the current study, x is fire load (MJ/m2). The cumulative dis-
tribution function is denoted by F(x). It is noted that other forms of distribution
functions, such as normal, Beta and Gumbel distributions, have been used by
researchers in the past (see Table 1). However, the domains of these distributions
do no satisfy Criteria (1) and are, therefore, not explicitly expressed herein.

3.2.2. Regression and Goodness of Fit Analyses The identified distributions were
fitted to the collected fire load density data by using various estimation methods,
details of which can be found in [31–33]. These methods have been coded into R
routine library which was employed to process the data. The estimated parameter
values, the methods of estimation and the results of the goodness of fit analysis
are summarised in Table 7. As can be seen from this table, the parameters for the
Gev, Weibull and Lognormal distributions may differ a little, depending on the
method of estimation. For example, two sets of mean and standard deviations
were obtained from the maximum likelihood and method of moments estimators
separately for the lognormal distribution. The corresponding goodness of fit tests
also yielded two sets of values, though the differences are relatively small. In the
case of Gamma distribution, the value of parameter a varied, however, signifi-
cantly from 0.809 to 0.2.

It is noted that not all test results are necessarily produced by the R routines.
For example, the MLE and LME routines did not generate K-S, CVM and A-D
test results for Gev distribution. The MDE routine did not yield AIC, BIC and L-
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L test results for lognormal distribution. In the following analysis, the parameter
set that produces better goodness of fit test results, or small values of AIC, BIC
and absolute log likelihood is selected for further analysis and comparison with
other forms of distribution function.

Although the two methods of fitting Gev produced slightly different parameter
sets, the R library routines resulted in the same goodness of fit test outcomes. The
distribution parameter set obtained from MLE method was selected for further
analysis.

Apart from not satisfying selection Criteria (1), the Gumbel and normal distri-
butions are shown to have the worst goodness of fit test results, and therefore, are
excluded from further discussions.

The normalised histogram of fire load density data obtained from the total 85
rooms of the three surveyed schools is plotted in Fig. 1 together with fitted den-
sity distributions and cumulated distributions. The bin width for the histogram is
20 MJ/m2. The frequency of the histogram is normalised such that:

Table 7
Summary of Regression Result and Goodness of Fit Analysis*

Distribution Parameter values

Method of

fitting

Goodness of fit test

AIC BIC LL K–S CVM A–D

Gev l = 102.22,

r = 69.422, k = 0.594

MLE 1067.0 1074.3 -

530.51

– – –

l = 99.168,

r = 64.033, k = 0.742

LME

Weibull k = 0.793, k = 258.91 MLE 1139.2 1144.1 -

567.61

– – –

MDE – – – 0.227 1.553 8.407

Lognormal l = 5.022, r = 0.946 MLE 1089.5 1094.4 -

542.76

l = 4.859, r = 1.338 MME 1107.2 1112.1 -

551.62

l = 4.854, r = 0.577 MDE - - - 0.190 0.692 3.871

Gamma a = 0.809, b = 0.003 MLE 1149.6 1154.5 -

572.80

– – –

a = 0.200, b = 0.001 MME 1230.5 1235.3 -

613.22

– – –

a = 3.441, b = 0.024 MDE – – – 0.285 2.009 10.13

Gumbel l = 143.67, b = 200.15 LME 1220.6 1225.5 -

608.29

– – –

Normal l = 315.74, r = 705.90 MLE&

MME

1360.3 1365.2 -

678.16

0.382 4.143 20.34

*MLE = Maximum Likelihood Estimation; MME = Moment Matching Estimation; LME = L-Moment

Estimation; MDE = Minimum Distance Estimation AIC = Akaike information criterion; BIC = Bayesian

information criterion; LL = Log-Likelihood value, K–S = Kolmogorov–Smirnov criterion; CVM = Cramér–von

Mises criterion; A–D = Anderson–Darling criterion
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fi ¼
Fi
DN

ð7Þ

where D is bin width, i is the bin index, Fi is the frequency in the ith bin and N is
the size of the sample. The normalised frequency fi satisfies:

XB

i¼1

Dfi ¼ 1 ð8Þ

where B is the total number of bins (= 250 in this case). It is seen from Fig. 1a
that the normalised frequency distribution contains a long tail, or heavily skewed

Figure 1. The results of the survey distribution modelling.
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towards high end of the range, which is attributed to the fire load density data of
the libraries and storerooms (see Table 4) in the schools.

The plotted distributions in Fig. 1 are based on the MLE method which pro-
duces better estimates than other methods as indicated in Table 7. During the sur-
vey of the schools, no empty rooms were found. Therefore, a zero probability
density value at x = 0 appears to be a valid assumption. All selected distribution

functions, except Gev, yield f(0) = 0. For Gev, the domain starts at x ¼ l� r
k

� �
¼

12:87 (MJ/m2), i.e., f(12.87) = 0. All selected probability density distribution
functions yield good agreement with each other at the high end of the domain for
x > 1000 MJ/m2. See Fig. 1a. Starting at x = 100 (MJ/m2), all the models tend
to underestimate the cumulative probability in comparison to the experimental
result (Fig. 1b). As x increases, the cumulative probability by Gev becomes
exceeding that of the experimental value at around x = 400, the turning point for
Weibull is approximately at x = 1000, for lognormal, at x�1200 and for Gamma,
at x�1500 (MJ/m2).

To visually demonstrate the quality of fit, the Q-Q and P-P plots are presented
in Fig. 2. From Fig. 2b it is seen that the cumulative probabilities of the Gev clo-
sely match those of the empirical cumulative distribution. Data points represent-
ing the Gev distribution fall closely to the perfect line at lower end of the fire load
density (x< 500 MJ/m2); only at the high end of the range do the data points sig-
nificantly deviate from the straight line. The Weibull distribution overestimates the
fire load density of the empirical data for the same quantile and x< 1000 MJ/m2

but gives an underestimate for x > 1000 MJ/m2. The lognormal distribution dis-
plays a similar trend but less deviation from the straight line.

In order to give a more comprehensive comparison, all the selected distribution
functions are ranked in Table 8 according to their goodness of fit test outcomes
listed in Table 7.

It is interesting to see from Table 8 that the AIC, BIC and log-likelihood tests
provided the same rankings for all four density functions. Against the three good-
ness of fit criteria, Gev and lognormal distributions are ranked the first and sec-
ond best, respectively, to fit the normalised histogram of the surveyed fire load
data in the current study.

3.2.3. Other Considerations In this subsection, considerations are given to Criteria
(3) as outlined in Subsection 3.2.1 to further compare the three candidature func-
tions.

From a simplistic point of view, lognormal and Weibull distribution functions
are preferred since both have two parameters, one less than Gev distribution func-
tion. The simplicity offers an advantage that the parameter values can be rela-
tively easily calculated from the mean and standard deviation of the raw data. In
the past literature, it was not often that the raw data of detailed fire load surveys
were included in publications. The results are usually presented in terms of basic
statistical parameters such as the mean and the standard deviation. Using density
functions with fewer parameters, one could easily conduct a retrospective analysis
to find a corresponding distribution parameter values from the published means
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Figure 2. Evaluation of the regression modelling.

Table 8
Goodness of Fit Ranking

Ranking

Criteria

AIC BIC Log-likelihood

1 Gev Gev Gev

2 Lognormal Lognormal Lognormal

3 Weibull Weibull Weibull

4 Gamma Gamma Gamma
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and standard deviations. In particular, there are straightforward correlations
between the mean and standard deviations of lognormal distribution and the
mean and standard deviation of the raw data [34, 35].

Gumbel and normal distribution functions were also evaluated in this study.
The goodness of fit results indicated that they are ranked lowest among all selec-
ted distribution functions because of the mismatch of the domains. No explicit
results of these two distributions are presented herein.

In fire safety engineering design process, certain percentile fire load values may
be selected as input for design fires [1, 2]. To further compare Gev and lognormal
distributions, we examine some given percentile values by these two distributions
as listed in Table 9.

As we can see from Table 9, the differences between the values of mean and the
three nominated percentiles by the two distributions are relatively small. In partic-
ular, the fire load density values by the lognormal distribution modelling at the
90th and 95th percentiles, which are nominated by the International Fire Engi-
neering Guidelines [1], are slightly greater than the corresponding percentile values
by the Gev distribution modelling. Greater fire load density values at a nominated
percentile for design fire selection will result in more conservative or safer design
of the fire safety systems. Only at even higher percentiles, such as the 98th, the
lognormal distribution produces a lower fire load density value than the Gev dis-
tribution. However, the 98th percentile value is already a very conservative choice
for engineering design.

Based on all criteria assessment, the lognormal distribution is deemed the most
preferred probability density distribution of the fire load data obtained in the
school buildings of the current study in Australia.

4. Discussion

4.1. Comparison with the Published Data from Other Countries

Hadjisophocleous and Chen [22] conducted fire load surveys within elementary
and high schools located within Ottawa, Canada. Their study considered a total
of sixty-seven (67) rooms and enclosures. The movable fire load density data by

Table 9
Comparison of the Mean and Percentile Fire Load Density Values (MJ/
m2) by Gev and Lognormal Distributions

Distribution Mean

Percentile

90th 95th 98th

Gev 240.1 430.2 667.6 1171.9

Lognormal 237.3 510.0 719.1 1058.8

Relative difference* d (%) - 1.18 16.98 7.43 - 10.14

*Relative difference is the percentage of the difference divided by the average, or d ¼ 200 x2�x1
x2þx1
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Hadjisophocleous and Chen [22] is reproduced and compared with the data of the
current study in Table 10. The mean fire load densities within Canadian computer
rooms and libraries are generally deemed comparable with the current study,
although it should be noted that the current study made no differentiation
between primary or secondary IT rooms and libraries. The mean fire load density
results for classrooms, science and art rooms of the Canadian schools are gener-
ally of a larger magnitude in comparison to the current study. Hadjisphocleous
and Chen [22] observed that elementary classrooms comprised approximately
twice the amount of fire load density in high school classrooms. This trend is
comparable to the trend observed in the current study whereby primary school
classrooms were found to comprise approximately 1.5 times the amount of the fire
load density in the secondary school classrooms. There exist significant discrepan-
cies in the results (particularly in the Max and the STD) for the elementary
schools between the two studies as shown in Table 10. These discrepancies are
attributable to the fact that that storerooms were not surveyed in the Canadian
study as they were found to be closed. The high value of fire load density in store-
rooms (see Table 4) contributes significantly to the high Max and STD of the cur-
rent study.

The design guide for structural fire safety prepared by Thomas [18] details fire
load density data from various studies in multiple countries. The most comprehen-
sive data set collated by Thomas was with reference to school buildings in Ger-
many. The fire load density obtained by Thomas is reproduced in Table 11. Fire
load density related to storerooms was noted to be significantly lower in compar-
ison to the current study. Fire load density relating to libraries was noted to be

Table 10
Comparison of Moveable Fire Load Density in Different Room Types of
School Building

Surveyed rooms

Moveable fire load density (MJ/m2)

Hadjisophocleous and Chen [22] Current study

Min Max Mean STD Min Max Mean STD

Elementary schools

Classrooms 174.4 483.3 303.9 79.5 19.0 297 149 57.0

Computer rooms 172.8 233.7 211.4 33.6 84.0 440 206 202

Libraries 357.1 684.6 545.8 157.8 213 886 551 322

All elementary school rooms 172.8 684.6 329.5 129.9 19.0 4860 473 939

High schools

Classrooms 70.3 340.3 137.2 70.0 55.0 274 149 47.0

Computer rooms 136.6 348.2 201.0 71.9 84.0 440 206 202

Science rooms 269.9 461.8 336.0 63.8 42.0 163 69.0 41.0

Art rooms 368.3 595.9 490.7 93.5 61.0 149 100 28.0

Libraries 43.7 653.7 537.8 111.3 213 886 551 322

All high school rooms 70.3 653.7 265.1 155.9 42.0 886 138 172

All school rooms 70.3 684.6 – – 19.0 4860 316 710
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approximately three (3) times the amount for libraries in the study presented
above. Thomas’s data does not differentiate between classroom types (i.e. primary
or secondary) however the mean (i.e. 115 MJ/m2) and 90th percentile (i.e.
165 MJ/m2) fire load densities from Thomas’s data were considered to be compa-
rable to the mean (i.e. 107 MJ/m2) and 90th percentile (i.e. 139 MJ/m2) fire load
densities for secondary classrooms in the current study.

4.2. Comparison of the Probabilistic Distribution Models by Others

The skewed histogram of fire load density is not unique to the current study. It
was also found in surveys of a wide range of buildings, such as hotel buildings by
Gao et al. [11], in commercial premises by Zalok et al. [10] and in school build-
ings by Hadjisophocleous and Chen [22]. It is not surprising to see from Table 1
that lognormal distribution is most commonly used in the statistical modelling to
cope with the positively skewed fire load density data.

Thauvoye [15] compared the lognormal and Gumbel distributions for fire load
in commercial building in France. No significant difference was found between the
two distributions in respect to goodness of fit. However, the Gumbel distribution
has a drawback because of its domain extends to negative territory.

The fire load density histograms obtained by Hadjisophocleous and Chen [22]
from Canadian school buildings only displayed mildly skewed tail end and the
range of variation was much smaller (see Table 10) most likely due to their rela-
tively small sample size and absence of storeroom data which was noted to have a
significant impact in the result of the current study. Unfortunately, the statistical
modelling of the fire load density distributions was not found their study pub-
lished in 2010.

Table 11
Comparison of Moveable Fire Load Densities in Various Groups of
School Rooms

Room type

Moveable fire load density (MJ/m2)

Thomas [18] Current study

Mean 90th percentile Mean 90th percentile

Classrooms 115 165 149 (CL-P)*107 (CL-S) 229 (CL-P) 139 (CL-S)

Teacher rooms 375 720 – –

Special rooms 190 290 – –

Material rooms 705 1330 – –

Lecture rooms 80 165 – –

Admin rooms 450 760 – –

Libraries 1510 2550 551 882

Storerooms 440 885 2330 4180

Others 190 465 297 583

*CL-P = Classroom primary; CL-S = Classroom secondary
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4.3. Implications to Fire Safety Engineering Practice

The highly skewed distribution towards the right end or large fuel load density
value means that the fuel load density is very sensitive to the percentile value at
this end. In other words, a small change at the high end of percentile will result in
a large variation in the corresponding fire load density value. For example, when
the percentile value is increased from 90 to 95th, in Fig. 1b, the corresponding fire
load density is almost increased by more than 68% (525 to 884 MJ/m2) according
to the surveyed data of overall fire load density distribution presented in Table 4
or by 38% (525 to 725 MJ/m2) according to the fitted lognormal distribution. One
should bear in mind of such high sensitivity in the selection of design fire load
density.

The lower than surveyed fire load density values nominated in IFEG [1] at 90th
and 95th percentiles (see Table 4) means that IFEG is less conservative. Should
these percentiles be considered for design fire selection for schools, then more con-
servative fire load density values (or higher values) than that recommended in the
International Fire Engineering Guidelines should be used in Australian context.

As discussed earlier, the high skewness of the distribution is ascribed to the
data from storerooms in the current study. These data are true and realistic repre-
sentation of the fire load in school buildings. Storerooms in school buildings are
not necessarily designated rooms in terms of design and usage. Any room could
potentially be used as a storeroom during the lifetime of a school building. On
this basis, the impact of the storeroom data on the shape of PDF is real and
should not be ignored or treated separately. If a designer wishes to either include
or exclude the storerooms in the selection of design fire, adjustment can be made
in the selection of the percentile value of the fire load density. This is the core of
the performance-based probabilistic approach. So long it is justifiable, designers
have the discretion to determine the design parameters.

One of the verification methods for performance-based fire engineering design is
to use the deemed-to-satisfy provisions of building codes as a benchmark and then
establish that the performance solutions have the equivalent risk profiles to that of
the benchmark [27, 31–33]. In order to establish the risk profile of the benchmark,
statistical characteristics of the buildings that satisfy the prescriptive codes are
needed.

Apart from fire load density, ventilation factor and thermal properties of com-
partment lining materials are the other parameters that contribute to fire severity
[1, 36]. From building regulatory point of view, these parameters are also random
variables and require appropriate statistical descriptions. Studies in this area are,
however, lacking in the literature and further research is warranted. Otherwise
regardless of the accuracy or appropriateness of fire load density inputs, the
equivalent fire severity calculations will be at risk of being erroneous.
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5. Conclusions

This paper has presented the results of a field survey study on fire loads in schools
within the Sydney metropolitan area. It has been revealed that the range of varia-
tion in fire load density in school building compartments is significantly wide. The
histogram of the fire load density is found highly skewed towards the high value
end. The results were modelled with a number of probability density distribution
functions. A set of criteria was introduced for the selection of the distribution
function. The statistical analysis determined that fire load density for all the
rooms in the surveyed school buildings can be closely represented by generalised
extreme value and lognormal distributions. Based on the considerations of range
of domain, goodness of fit, robustness and versatility, it is recommended that log-
normal is the preferred model to characterise the fire load density distribution.

The outcomes of the study have shown some similarities between fire load data
collected from Australia and that from a number of other countries. The study
also identified some issues in relation to data provided in commonly referenced
documents such as IFEG. Discrepancies were found between early published data
and the results of the current study. These discrepancies may be attributable to
chronological change in the contents of the building of the same category and/or
to the differences in geographic region/location.

Additionally, holistic fire load density values detailed in published documents
do not account for subtle differences (e.g. school type and room use) which can
have a profound impact on the outcome of fire safety engineering assessments. It
has been found that while basic statistical characteristics show similarities glob-
ally, some other characteristics, particularly 80th, 90th and 95th percentiles, may
differ from one country to the other. This outcome suggests that fire load selec-
tion for design fires [1] in fire safety engineering design and assessment of struc-
tural fire resistance should be better based on local data and a careful review of
the unified approach in the International Fire Engineering Guidelines is war-
ranted.

This study was limited to 3 schools in the Greater Sydney metropolitan area. It
is not known whether the results represent the fire load distribution for typical
Australian schools. More surveys in other states and cities would be necessary to
consolidate and generalise the findings for guiding fire safety engineering design
practice. Surveys of fire load for other types of occupancies and surveys of venti-
lation factors are also needed in order for engineers to have appropriate data to
develop performance based design solutions.
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