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Abstract—Measuring left ventricle (LV) volume is a challenging
problem in physiological study. One of the non-intrusive methods
that is possible for this task is echocardiography. By extracting
left ventricle area from ultrasound images, the volume can be
approximated by the size of the left ventricle area. The core
of the problem becomes the identification of the left ventricle
in noisy images considering spatial temporal information. We
propose adaptive sparse smoothing for left ventricle segmentation
for each frame in echocardiography video for the benefit of
robustness against strong speckle noise in ultrasound imagery.
Then we adjust the identified left ventricle areas (as curves
in polar coordinate system) further by a fixed rank principal
component analysis as post processing. This method is tested on
two data sets with labelled left ventricle areas for some frames by
expert physiologist and compared against active contour based
method. The experimental results show clearly that the proposed
method has better accuracy than that of the competitor.

Index Terms—Echocardiography, image segmentation, func-
tion smoothing

1. INTRODUCTION

Measuring the volume of left ventricle (LV) from echocar-
diography video sequences has many applications in phys-
iological research. For example, the subject is tested under
different breathing conditions and ultrasound images are con-
sistently sampled in situ to monitor the stroke volume. The
data is the video sequences of the heart and our focus is the
volume of the left ventricle in each image. Since the imaging
is done in 2D, we use the area of the left ventricle as a
surrogate for volume. Although this is only an approximation,
in most circumstances, this approximate will be good enough
for example when the change of heart volume under different
conditions is of interest.

Some sample frames are shown in Fig. 1, which shows
ultrasound images of the four chambers of the heart in the
so-called apical four-chamber (A4C) view. These images are
original ultrasound images without any processing. Note that
the conventional display in echocardiography is upside down
and with the left and right switched. So LV is on the right
side, labelled by green curve in the figure. These images
typify common problems with echocardiography that present
challenges with image analysis, such as 1) variable clarity of
the image, most places blurry, 2) loss of visibility of some
tissues such as some fraction of an external ventricular wall,
and 3) speckling every where especially in the LV chamber.

If we focus only on LV area, it is not quite clear where
the true LV internal wall should be even for humans. The
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Fig. 1: Sample frames from one ultrasound video sequence
with frame number on top.

delineated LV boundaries, green curves in Fig. 1, was gener-
ated manually by expert physiologist. The target is to design
an automated system to extract LV area, i.e. delineating the
internal wall of LV and calculating its area, which could
hopefully agree with what experts will obtain.

Apparently this can be treated as an object identification
and tracking problem in computer vision. Indeed, there are
many papers about left ventricle tracking for different data
modalities using various methods, such as magnetic resonance
imaging (MR) sequences [14, 1, 2], computerised tomography
(3D ultrasound) [18], and 2D echocardiography [13, 15, 14].
Most of them are dealing with the images in the original image
domain. The usual workflow is image enhancement such as
despeckling [17] and noise reduction [19], then segmentation
[8] and then temporal correlation [6, 3].

Nonetheless, we treat it as an image-based object identifi-
cation problem instead of a tracking problem. There are many
shape-based methods such as active contour and snake [7].
They are working on original image and searching for image
statistics such that the region of interest (ROI), i.e. the entire
LV, has distinct features from other areas. In this paper we
describe a novel method which uses polar coordinates instead
where the segmentation problem is converted into a function
smoothing problem so that a specific smoothing scheme can
be designed to tackle problems that may arise. The advantage
of this conversion is that it does denoising and segmentation at
once and thus reducing the pressure from image preprocessing.
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Moreover, based on the knowledge of the cardiac cycle, we
propose fixed rank principal component analysis (PCA) to
further smooth the identified LV areas so that these areas are
similar to each other and their corresponding curves occupy
three subspaces each of which is a phase in a cardiac cycle.

The following sections will explain the method in more
detail, followed by some experiments to show its effectiveness.

2. POLAR COORDINATES

Write I as a given image, p the pixel values. Before
conversion, an image of an echocardiography sequence has to
pass a simple image enhancement. We use adaptive histogram
equalisation [11] with 1024 bins and 8 × 8 tiles. Then the
image is binarised by thresholding at p̄ + 2

√
V ar(p), where

p̄ and and V ar(p) are the mean and variance of all pixels.
Then we apply “close” and “clean” morphological operations
to remove isolated pixels. Fig. 2 shows the processed image
at each step.

Fig. 2: One image (frame 380 shown in Fig. 1) from the
sequence. From left to right, the image passes through three
simple steps for image preprocessing.

It is clear that some fraction of the left ventricle is missing
while most of it is preserved. The chamber of the left ventricle
is the dark area in the middle. If one locates the origin of
polar coordinate system inside the left ventricle chamber, and
convert the usual Cartesian coordinates of remaining pixels
(see the fourth plot in Fig. 2) to polar coordinate system,
then the pixels in the new coordinate system will lie above
a base line, which is the boundary of the left ventricle. In
echocardiography, it is usually straightforward to find a point
inside the chamber. It can be estimated or set manually so that
despite lateral movement of the heart, it will remain within
the LV chamber. It matters little where the origin of polar
coordinate system because it changes only the shape of the
boundary but not the relative locations of the pixels. We write
l(θ) for a pixel in polar coordinates, emphasising the value of l,
the distance, as a function of the angle θ and θ ∈ [0, 360o]. Fig.
3 shows a binarised frame and two sets of polar coordinates at
different origins (as blue and green crosses). The two sets are
very similar and therefore it is not critical in regards to where
the origin is as long as it is inside LV chamber. Interestingly
the inner wall of the LV chamber now becomes the lower
boundary of all pixels in polar coordinate system. Finding
this lower boundary is a much easier problem than delineating
the inner wall of LV in image. Although there are many LV
inner wall pixels missing, it would be easier in this domain to
“patch up” by simple interpolation. In following discussion,

we assume all operations are in polar coordinate system and
clarify it otherwise.
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Fig. 3: The binary image of frame 380 shown in Fig. 1 with
bins (blue lines). Left: the binary image with two origins (blue
and green crosses); middle and right: the polar coordinates of
remaining pixels centred at blue and green crosses respec-
tively; horizontal axis is angle from 0 to 360 degrees and and
vertical is distance from the origin.

3. ADAPTIVE SPARSE SMOOTHING

Due to the nature of raster scan in image, the pixels in polar
coordinates are also in discrete “grid” as shown in the right
panel in Fig. 4, which is a detailed plot of a section at angles
between 233-243 degrees. As the inner wall of LV is connected
elastic muscular tissue, it should be smooth without sharp turns
and in general no drastic changes so that the boundary pixels
in image in polar coordinates should be smooth as well. The
green dotted line in Fig. 4 shows an estimation of the LV wall
delineated manually by human expert, which is regarded as
ground truth. We start with rough estimation of LV wall as

yb(θb) = min{l(θ), ∀θ ∈ [θb, θb+1)}, (3.1)

where b = 1, . . . , B is the index of total B equal width angles
bins, and θb and θb+1 are both sides of the bth bin. Note
that yb’s have values only on θb’s. This amounts to down
sampling on the image to reduce dimensionality. However, it is
straightforward to extend to all pixels by setting y(θ) = yb(θb)
when θ ∈ [θb, θb+1). We set B = 200 throughout the paper
although this number can be optimised. As B increases, y
becomes less smooth.

The red dotted line in Fig. 4 shows the estimated lower
boundary y, or in other words, a rough estimate of the LV
wall. The departure of this estimate from the true one is
quite clear, with large changes at various places, e.g. the most
noticeable at 237 degrees, non-smoothness and missing values.
Nevertheless, the section around 160∼210 degrees is good and
the section 130∼160 degrees appears noisy.

There are several observations from this simple estimation.
A. if one could filter out the large changes, the fit (to the
true LV wall) would be reasonable. B. some sections can be
fixed by smoothing such as 130∼160 degrees section. C. the
missing part can be filled by interpolation, even as simple as
linear interpolation if both ends of the missing section can
be well fitted. D. the pixels above the boundary have little
influence to the determination of the boundary.

Considering the requirement of filtering large changes, we
introduce sparsity in the smoothing model. Write y as the
vector form of the rough estimate of LV wall with missing
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Fig. 4: The image (frame 380 in Fig. 1) from the sequence. The red dotted line is the estimated lower boundary and green
one is the ground truth. Left: the image in polar coordinates with bins (light blue bars); right: the section of left plot at angles
between 233-243 degrees.

values removed, and f the smoothed version. We have the
following model

y = f + ϵ, ϵ ∼ L(θ) (3.2)

where ϵ is the noise, L(θ) is Laplacian distribution with
parameters θ, and f ∈ C1 a family of smooth functions with
continuous derivative of at least order 1, for example splines.
The purpose of modelling noise with Laplacian distribution
is to increase the probability of large changes so that the
model will not move too much to deal with them. The
next is to write a maximum likelihood (ML) function for
parameters estimation and then maximum a posterior to obtain
f̂ . However, we take another route to achieve the same thing
as the following

min
f

∥y − f∥1 + λS(f), (3.3)

where ∥ · ∥1 is the ℓ1 norm of a vector, S(·) is the smoothness
evaluation function, and λ ≥ 0 is a regularisation parameter.
We choose S(f) = ∥D(f)∥22 where D is the differentiation
operator and ∥·∥2 is the ℓ2 norm. It is well known that (3.3) is
equivalent to the probabilistic scheme through ML [9] while it
has more direct interpretation in that the ℓ1 norm for the noise
has some tolerance for large values, and the second term is
the trade-off between fit and smoothness. We call it sparse
smoothing or SPAS for short.

We introduce x = y − f and (3.3) becomes

min
x

∥x∥1 + λ∥D(x− y)∥22, (3.4)

which is readily solved by many optimisation schemes. We use
gradient projection [12] for it. The above problem is convex.
Therefore a unique solution exists and the initialisation is not
critical.

Fig. 5 shows the results of SPAS with various values of
λ. SPAS successfully screens large sudden changes such as
large spikes thanks to its robustness brought by the sparse
component. Apparently, the larger the value of λ, the smoother
the estimated curve. Although smoother is not necessarily
better as the SPAS with λ = 5 has significant departure
from truth at many places such as around 100 degrees, it is

Fig. 5: The image (frame 380 in Fig. 1) from the sequence.
The red dotted line is the estimated lower boundary and green
one is the ground truth.

preferable to have stronger smoothing effect at some places
such as at 259 degree where the largest jump happens caused
by missing pixels so that the left atrium’s inner pixels are
mistakenly picked up as LV wall. This clearly requires an
adaptive scheme of smoothing.

We introduce adaptive smoothing for the both terms in Eq.
(3.3) as

min
f

∥Wf (y − f)∥1 + β∥WsD(f)∥22, (3.5)

where Wf and Ws are diagonal matrices with compatible
sizes containing penalty weights for noise and smoothness.
Write wf and ws the vectors consisting of diagonal elements
of Wf and Ws respectively, f̂1(λ) the solution of (3.3) at λ
and n̂1 = y − f̂1(λ). Then we set

wf =
Mean(|n̂1|)

|n̂1|
(3.6)

and

ws = max{1, |n̂1|
Mean(n̂1)

− 1} (3.7)

where Mean(x) is the mean of x. Eq. (3.6) is similar to the
weights in a single iteration of re-weighted ℓ1 minimisation
[5]. However we use Eq. (3.6) as the weights in lieu of 1

|n̂1|+ϵ
in [5]. Apparently Eq. (3.6) is more conservative in terms
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of sparsity encouraging ability as the smaller ones are not
so heavily penalised. Note that if we assume the noise from
Laplacian distribution with zero mean, Mean(|n̂1|) is the
mean absolute deviation, i.e. the bandwidth of the distribution.
Then Eq. (3.6) is a standardisation of the noise to have unit
bandwidth. From this point of view, the function of Eq. (3.7)
is then quite clear. A “normal” amount of smoothing applies
to places where the noise (after standardisation) is within one
unit, otherwise the smoothing effect increase proportionally
with the deviation from unit length. The purpose of these two
sets of weights together is to smooth across large gaps such
as the one at 260∼280 degrees shown in Fig. 5. The gap is
caused by the mitral valve flipping up to fill LV. Part of it is
missing during binarisation (see the little “island” at around
250 degrees in Fig. 5). The lower boundary finding, i.e. (3.1),
then “sees” through to left atrium (LA) wall and causes the
big jump. Then later boundary section (after 250 degrees) is
actually LA wall pixels until LV wall back in sight at 290
degrees. The weights in (3.6) and (3.7) work together so that
the large jump can be ignored and strong smoothing effect
after the big jump ensures that the final curve can get across
the gap without mounting back the erroneous pixels. We call
(3.5) adaptive sparse smoothing (ADASPAS).

Fig. 6: The image (frame 380 in Fig. 1) from the sequence.
The red dotted line is the estimated lower boundary and green
one is the ground truth.

Fig. 6 shows the results of ADASPAS with various values
of β with λ = 5 in the first pass to obtain Wf and
Ws. The fit is much better at the big gap while almost
the same as SPAS at other places. Similar to λ in SPAS,
β in ADASPAS is controlling the trade-off between noise
reduction and smoothness. As we can see from Fig. 6, too
strong smoothing is not desirable as the outcome lacks the
ability to trace the LV wall pixels. The choice of λ and β
has to be carried out carefully to ensure good result. We fix
β = 1 and λ = 5 in our experiments as this set seems to work
reasonably well. The optimal value of λ and β is a topic of
our future research.

After ADASPAS, we obtain an estimation of LV wall in
polar coordinates, where there is still a missing value issue. It
can be done in either polar coordinate system or in Cartesian
coordinate system. We choose the latter as line segment in
polar coordinates is section of parabola in Cartesian coordi-

nates, which tends to overestimate the LV area. Therefore, we
convert from polar coordinates to Cartesian resulting segments
of estimated LV walls on the original image. The missing
pieces are filled then by connecting both ends.

Fig. 7 shows the final segmentation of LV on frame 380.
It is very challenging as a large portion of the LV wall is
missing and the mitral valve pixels have to be removed ideally.
The rough estimation, shown in the 2nd from left in Fig.
7, stretched outside of LV and into the left atrium due to
the missing pixels after binarisation. ADASPAS smoothes out
those large spikes and gets through the gap where the mitral
valve should be, i.e. the bottom of LV. The estimated area is
similar to the expert’s estimate.

Fig. 7: The image (frame 380 in Fig. 1). From left to right: the
binarised image with polar coordinate origin (blue cross) along
with roughly estimated (red curve), ADASPAS refined LV
boundaries (blue) and ground truth contour (green); roughly
estimated LV area rendered in image (pink area); ADASPAS
estimated LV area; ground truth LV area.

4. FIXED RANK PCA

It is known that the cardiac cycle has four stages in terms
of blood flow, i.e. isovolumic relaxation, inflow, isovolumic
contraction and ejection [10]. Therefore in each stage, the
left ventricle can be regarded as contracting or expanding
concentrically which will be reflected as vertical shift if we
assume the centre does not move. Let fi be the estimated
LV wall curve for the ith frame in the video after missing
values filled, F = [f1, . . . , fN ] the matrix of all LV. Based
on the stages in cardiac cycle, each stage could be a subspace
where the LV wall looks very similar except vertical shift, and
therefore a rank 1 subspace. Given 4 stages, we conjure that
the underlying subspace is actually of rank 4, so we have the
following model

F = C+E, Rank(C) = 4 (4.1)

where C is the matrix of true LV wall curves and E is the error
matrix and both are of compatible size to F. For robustness
consideration, we again apply sparse encouraging norm to E
to quantify the error, which leads to the following problem

min
E,C

∥E∥1 (4.2)

s.t. Rank(C) = 4

F = C+E

which is called fixed rank PCA. The rank constraint causes
the objective in (4.3) NP-hard and therefore we have to seek
approximation. A feasible approximation is replacing rank by
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nuclear norm resulting in robust PCA (RPCA) [4]. Then the
objective in (4.3) becomes

min
E,C

∥E∥1 + λ∥C∥∗ (4.3)

s.t.F = C+E

where ∥C∥∗ is the nuclear norm, i.e. the sum of singular
values of C, and λ is a non-negative real number to control
the trade-off between sparsity of E and nuclear norm of C.
For our purpose of realising model in (4.1), we find a suitable
value for λ such that rank(C) = 4. Another possible route
is through coherent pursuit (CoP)[16], which finds the fixed
rank subspace from a given number of lest coherent samples
from the data. We found that CoP is inferior to RPCA for our
purpose in terms of the performance statistics. Therefore we
choose RPCA as our solver for our model in (4.1). We use
C, the outcome of (4.1), as the final output for performance
evaluation in our experiments.

5. EXPERIMENT EVALUATION

We ran through two echocardiography videos of two sub-
jects resting in the supine position and apply ADASPAS,
ADASPAS with fixed rank PCA, written as ADASPAS+, and
active contour based method [7] as a comparison study. Two
echocardiography videos were collected during ultrasound
scanning at 25 frames per second and, thus, the number
of frames analysed was a function of this frame rate, heart
rate, and number of cardiac cycles, i.e. sequences of systole,
diastole, systole and so on. For these two videos, we have
several cardiac cycles labelled by the expert physiologist as
ground truth. The measurement of the size of the LV area is
the quantity of interest, which we compare quantitatively.

Fig. 8 shows the estimated LV area measurements as pixel
counts. Note that for data set 1 we have 4 full cardiac cycles
although there are gaps between cycles. ADASPAS family
follow the true LV area measurements much better than active
contour method, and most importantly it reveals the cardiac
cycles, i.e. the diastole and systole waves quite well. However,
active contour method has much less variation and consistently
underestimates LV area, showing cycles very weakly. Data
set 2 contains one and half continuous cycles. Similar to
data set 1, ADASPAS result is closer to true measurements
while active contour method is a consistent overestimate. This
set is very challenging as in most frames, a quarter of the
LV wall and mitral valve pixels are missing. Thus it is very
difficult for active contour method not to “leak out” to non-LV
areas so that it included quite a lot of non-LV pixels. Fig. 9
shows the problem quite clearly. On data set 2, active contour
failed to hold at the gap created by missing mitral valve while
ADASPAS and ADASPAS+ closed it up successfully in most
cases.

We quantify the results by mean error, standard deviation
of error (Std), correlation (Corr) and R2 (R-squared) values
between the estimated LV area measurements and the true
values. The error is rescaled by true value. For mean and Std,
the smaller the absolute value the better. For Corr, the larger
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Fig. 8: LV area tracking on two echocardiography videos.
ADASPAS is consistently better than active contour method.

the better. For R2, the closer to 0 the better. These statistics
together describe how well the estimated values are predicting
the true values.

TABLE I: Statistics of the performance of two methods

Data
set

Method Mean Std Corr R-squared

Set 1
ADASPAS 0.011246 0.11829 0.70051 0.46858

ADASPAS+ -0.099629 0.091464 0.77694 0.10974
AC -0.083212 0.14287 0.35161 -0.34201

Set 2
ADASPAS 0.13116 0.062314 0.93117 -0.3178

ADASPAS+ 0.063467 0.073359 0.86073 0.43797
AC 0.3153 0.13204 0.79224 -4.9467

Table I summarises the results. ADASPAS family outper-
forms active contour method in all statistics. We need to point
out that all methods ran through the whole video from frame
1 and only labelled frames were used for comparison. For
ADASPAS family, a centre point was given and fixed for both
videos while for active contour method, a starting LV, which is
a manual labelled LV on frame 1 was given as initial contour
and its estimated LV on one frame is used as initialisation for
next frame. In this sense, active contour method used more
information to start and also temporal information to track,
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Fig. 9: LV contours obtained by different methods on image
frames from two echocardiography videos. Green curve is
the ground truth, red is by ADASPAS, blue ADASPAS+ and
yellow active contour.

way more information than what was available for ADASPAS
family. Even so, it is far less accurate. Moreover, ADASPAS
family are much faster than active contour. In our experiment,
it cost only a tenth of what active contour needed to run
through all frames in a video.

From Fig. 8 we see that active contour results contain cycles
that might actually get the cardiac cycle right after rescaling.
To verify this, for each measurement, we remove the mean and
rescale by dividing the range. Note that the mean and range
are taken from all measured LV area values by an algorithm
in comparison. This operation is to match the measurement
regardless the scales. Rescaling could be useful if the study of
the echocardiography is to monitor heart performance under
different conditions, for example with or without strenuous
exercises. Fig. 10 shows the rescaled measurements with
ground truth, where we see much better alignment. However,
results from ADASPAS family are better in terms of matching
cardiac cycles. Again, this visual observation is quantified by
previously mentioned statistics in Table II. Although active
contour results improve a lot after rescaling reflected by
better statistics, it is still significantly inferior to those from
ADASPAS family.

Fig. 9 shows only a handful of actual LV contours obtained
by different methods. We run the previous statistics used to
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Fig. 10: LV area measurements after rescaling. ADASPAS
family are still better than active contour method.

TABLE II: Statistics of the performance of two methods after
rescaling

Data
set

Method Mean Std Corr R-squared

Set 1
ADASPAS 8.5877e-07 1.098e-05 0.70051 0.46858

ADASPAS+ 4.0401e-07 9.9076e-06 0.77694 0.10974
AC 1.4925e-06 1.7956e-05 0.35161 -0.34201

Set 2
ADASPAS 4.5909e-08 6.0364e-06 0.93117 -0.3178

ADASPAS+ 3.1979e-07 7.9466e-06 0.86073 0.43797
AC 4.4367e-07 1.0917e-05 0.79224 -4.9467

quantify measured LV areas on estimated LV contours and
summarise in bar plot shown in Fig. 11. For each frame, we
estimate LV contour using all algorithms and compute their
performance statistics referring to ground truth. Then for each
statistic, we calculate the mean and standard deviation to quan-
tify the overall performance of a method. These summarising
statistics are visualised as bar plot in Fig. 11, where the height
of bar is the mean of that performance statistic across all
frames, with error bars on top, which is the standard deviation
of that performance statistic. Not that although Corr and R-
squared are between 0 and 1, Mean and Std vary greatly. So
for every performance statistic, we rescale the maximum to be
1 and apply the same scaling factor to standard deviation so
that in Fig. 11 the highest bar in each performance statistic is
always one, which better shows the performance differences.
Note that for Mean and Std, the lower the better while for
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Corr and R-squared, the larger the better.
It is very clear that ADASPAS+ is leading in most of

performance statistics, meaning that the fixe rank PCA does
some positive adjustment to the contours estimated by ADAS-
PAS, which is also evident in Fig. 9 where we can see that
ADASPAS+ corrected the contour of that from ADASPAS,
for example on frame 25 and 30. So ADASPAS+ LV contour
estimation is closer to the truth than others.

Mean Std Corr R-squared
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Fig. 11: Evaluation of LV contours obtained by different
methods on image frames from two echocardiography videos.
Green bars are for ADASPAS, blue for ADASPAS+ and
yellow active contour. The height of the solid bar the mean of
the statistic, and the red bar on top is the standard deviation of
the statistic. The maximum among each statistics is rescaled
to 1 for visualisation purpose.

6. CONCLUSIONS

We proposed adaptive sparse smoothing (ADASPAS) with
a fixed rank PCA for left ventricle volume measurement
problem in this paper. It works on polar coordinates where
the left ventricle contour identification is converted into a
function smoothing problem. It requires very “light” image
preprocessing and it is able to smooth out large spiky noise as
well as large gaps caused by missing wall pixels. After the LV
contour of each frame is extracted, a fixed rank PCA is applied
to further smooth the estimated contours. Our experiment
results showed that the proposed algorithms outperformed
active contour method by large margin requiring much less
information.
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